C1sco SYSTEMS

Cisco Unified TAPI Developers Guide for
Cisco Unified CallManager Release 5.0

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 526-4100

Text Part Number: OL-9442-01

Y

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THISMANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANY ING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “ASIS” WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NOEVENT SHALL CISCO ORITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITSORLOSSOR DAMAGE TODATA ARISING OUT OF THE USE OR INABILITY TO USE THISMANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CSP, CCVP, the Cisco Square Bridge logo, Follow Me Browsing, and StackWise are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn, and
Juick Study are service marks of Cisco Systems, Inc.; and Access Registrar, Aironet, BPX, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, Cisco, the Cisco Certified
ternetwork Expert logo, Cisco I0S, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Enterprise/Solver, EtherChannel, EtherFast,
‘herSwitch, Fast Step, FormShare, GigaDrive, GigaStack, HomeLink, Internet Quotient, IOS, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, LightStream,

nksys, MeetingPlace, MGX, the Networkers logo, Networking Academy, Network Registrar, Packet, PIX, Post-Routing, Pre-Routing, ProConnect, RateMUX, ScriptShare,
ideCast, SMARTnet, The Fastest Way to Increase Your Internet Quotient, and TransPath are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States
id certain other countries.

11 other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship
stween Cisco and any other company. (0601R)

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager Release 5.0
Copyright © 2000-2006, Cisco Systems, Inc.
All rights reserved.

CONTENTS

Preface xiii

Introduction xiii

Purpose xiv

Audience xiv

Organization xiv

New and Changed Information xv

Related Documentation xv

Required Software xv

Conventions xv

Obtaining Documentation xvi
Cisco.com xvii
Documentation DVD xvii
Ordering Documentation xvii

Documentation Feedback xviii

Cisco Product Security Overview xviii

Reporting Security Problems in Cisco Products xviii
Obtaining Technical Assistance xix

Cisco Technical Support Website xix

Submitting a Service Request xx

Definitions of Service Request Severity xx

Obtaining Additional Publications and Information xx

cHAPTER 1 Overview 1-1
Cisco Unified TSP 5.0 Functions 11

Call Control 1-2
First-Party Call Control ~ 1-2
Third-Party Call Control 1-2

CTIPort 1-2

Dynamic Port Registration 1-3

CTI Route Point 1-3

Media Termination at Route Point 1-3

CTI Manager (Cluster Support) 1-3
Cisco Unified CallManager Failure 1-4

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .“

Il Contents

Call Survivability 1-5
CTl Manager Failure 1-5
Cisco Unified TAPI Application Failure 1-5

Supported Device Types 1-5
Forwarding 1-6

Redirect and Blind Transfer 1-6
lineRedirect 1-6
lineDevSpecific — Redirect Reset Original Called ID 1-6
lineDevSpecific — Redirect Set Original Called ID 1-7
lineDevSpecific — Redirect FAC CMC ~ 1-7
lineBlindTransfer 1-7
lineDevSpecific - BlindTransfer FAC CMC 1-7

Extension Mobility Support ~ 1-8
Directory Change Notification Handling 1-8
Monitoring Call Park Directory Numbers ~ 1-9
Multiple Cisco Unified TSPs ~ 1-9
Multiple Calls per Line Appearance 1-10
Maximum Number of Calls 1-10
Busy Trigger 1-10
CFNA Timer 1-10
Shared Line Appearance 1-10
Select Calls 1-11
Direct Transfer 1-11
Join 1M
Privacy Release 1-12
Barge and cBarge 1-12
Cisco Unified TSP Auto Update Functionality — 1-12
QoS Support 1-13
Presentation Indication (PI) ~ 1-13
Compatibility 1-13
Unicode Support 1-14
TLS Support 1-14
SRTP Support 1-14
FAC/CMC Support 1-14
CTI Port Third Party Monitoring Port ~ 1-15
CTI Device/Line Restriction 1-15
XSI Object Pass Through ~ 1-15

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

Contents I

cHAPTER 2 Cisco Unified TAPI Installation 2-1
Introduction 2-1
Installing the Cisco Unified TSP 2-2
Activating the Cisco Unified TSP 2-3
Configuring the Cisco Unified TSP 2-4
Cisco Unified TSP Configuration Settings ~ 2-5
General Tab 2.5
UserTab 2-6
CTI Manager Tab 27
Wave Tab 2-8
Trace Tab 2-10
Advanced Tab 2-12
Language Tab 2-13
Installing the Wave Driver 2413
Saving Wave Driver Information ~ 2-15
Verifying the Wave Driver Exists ~ 2-16
Verifying the Cisco Unified TSP Installation 2-16
Setting Up Client-Server Configuration ~ 2-17
Uninstalling the Wave Driver ~ 2-18
Removing the Cisco Unified TSP 2-19
Managing the Cisco Unified TSP 2-20
Reinstalling the Cisco Unified TSP 2-20
Upgrading the Cisco Unified TSP 2-20
Auto Update for Cisco Unified TSP Upgrades — 2-21
Uninstalling the Cisco Unified TSP 2-23

cHapTErR 3 Cisco Unified TAPI Implementation 3-1

TAPI Line Functions ~ 3-2
lineAccept 3-4
lineAddProvider 3-4
lineAddToConference 3-5
lineAnswer 3-6
lineBlindTransfer 3-6
lineCallbackFunc ~ 3-7
lineClose 3-8
lineCompleteTransfer 3-9
lineConfigProvider 3-10
lineDeallocateCall ~ 3-11

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .n

Il Contents

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

lineDevSpecific 3-11
lineDial 3-12

lineDrop 3-13

lineForward 3-14
lineGenerateDigits 3-16
lineGenerateTone 3-17
lineGetAddressCaps 3-18
lineGetAddressID 3-19
lineGetAddressStatus ~ 3-20
lineGetCalllnfo 3-20
lineGetCallStatus ~ 3-21
lineGetConfRelatedCalls 3-21
lineGetDevCaps 3-22
lineGetlD 3-23
lineGetLineDevStatus 3-24
lineGetMessage 3-25
lineGetNewCalls 3-26
lineGetNumRings 3-27
lineGetProviderList 3-28
lineGetRequest ~ 3-28
lineGetStatusMessages — 3-29
lineGetTranslateCaps 3-30
lineHandoff 3-31

lineHold 3-32

linelnitialize 3-33
linelnitializekx 3-34
lineMakeCall ~ 3-35
lineMonitorDigits ~ 3-36
lineMonitorTones 3-36
lineNegotiateAPIVersion 3-37
lineNegotiateExtVersion 3-38
lineOpen 3-39

linePark 3-40
linePrepareAddToConference
lineRedirect 3-43
lineRegisterRequestRecipient
lineRemoveProvider 3-45
lineSetAppPriority 3-45
lineSetCallPrivilege ~ 3-47
lineSetNumRings ~ 3-47

oL-9442-01 |

lineSetStatusMessages ~ 3-48
lineSetTollList 3-50
lineSetupConference 3-51
lineSetupTransfer ~ 3-52
lineShutdown ~ 3-52
lineTranslateAddress 3-53
lineTranslateDialog 3-54
lineUnhold 3-56
lineUnpark 3-56

TAPI Line Messages ~ 3-57

LINE_ADDRESSSTATE 3-57
LINE_APPNEWCALL 3-59
LINE_CALLINFO 3-59
LINE_CALLSTATE 3-60
LINE_CLOSE 3-63
LINE_CREATE 3-64
LINE_DEVSPECIFIC ~ 3-65
LINE_GENERATE 3-65
LINE_LINEDEVSTATE 3-66
LINE_MONITORDIGITS 3-67
LINE_MONITORTONE 3-68
LINE_REMOVE 3-69
LINE_REPLY 3-69
LINE_REQUEST 3-70

TAPI Line Device Structures 3-1

LINEADDRESSCAPS ~ 3-72
LINEADDRESSSTATUS 3-79
LINEAPPINFO 3-80
LINECALLINFO 3-81
LINECALLLIST ~ 3-87
LINECALLPARAMS 3-88
LINECALLSTATUS 3-89
LINECARDENTRY 3-92
LINECOUNTRYENTRY 3-94
LINECOUNTRYLIST 3-95
LINEDEVCAPS 3-96
LINEDEVSTATUS 3-100
LINEEXTENSIONID ~ 3-101
LINEFORWARD 3-101
LINEFORWARDLIST ~ 3-104

[oL-9442-01

Contents I

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Il Contents

LINEGENERATETONE 3-104
LINEINITIALIZEEXPARAMS 3-105
LINELOCATIONENTRY 3-106
LINEMESSAGE 3-108
LINEMONITORTONE 3-109
LINEPROVIDERENTRY 3-109
LINEPROVIDERLIST ~ 3-110
LINEREQMAKECALL ~ 3-111
LINETRANSLATECAPS = 3-112
LINETRANSLATEQUTPUT ~ 3-113

TAPI Phone Functions 3-115
phoneCallbackFunc ~ 3-115
phoneClose 3-116
phoneDevSpecific 3-117
phoneGetDevCaps 3-117
phoneGetDisplay 3-118
phoneGetLamp 3-119
phoneGetMessage 3-120
phoneGetRing 3-121
phoneGetStatus ~ 3-122
phoneGetStatusMessages 3-122
phonelnitialize 3-124
phonelnitializekx ~ 3-125
phoneNegotiateAPIVersion 3-127
phoneOpen 3-128
phoneSetDisplay 3-129
phoneSetlamp 3-130
phoneSetStatusMessages 3-131
phoneShutdown 3-132

TAPI Phone Messages 3-133
PHONE_BUTTON 3-134
PHONE_CLOSE 3-136
PHONE_CREATE = 3-137
PHONE_REMOVE 3-137
PHONE_REPLY 3-138
PHONE_STATE 3-139

TAPI Phone Structures 3-141
PHONECAPS 3-141
PHONEINITIALIZEEXPARAMS 3-142

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

cCHAPTER 4

PHONEMESSAGE 3-143
PHONESTATUS 3-144
VARSTRING 3-147

Wave 3-148

wavelnAddBuffer 3-148
wavelnClose 3-149
wavelnGetlD 3-149
wavelnGetPosition 3-150
wavelnOpen 3-150
wavelnPrepareHeader ~ 3-152
wavelnReset 3-152
wavelnStart 3-153
wavelnUnprepareHeader ~ 3-153
waveQutClose 3-154
waveOQutGetDevCaps 3-154
waveQutGetlD 3-155
waveQutGetPosition 3-155
waveOQutOpen 3-156
waveQutPrepareHeader 3-157
waveQOutReset 3-158
waveQutUnprepareHeader 3-158
waveQutWrite 3-159

Cisco Device Specific Extensions 4-1

Cisco Line Device Specific Extensions 4-1

Structures 4-3

LINECALLINFOQ Device Specific Extensions 4-4
LINEDEVSTATUS Device Specific Extensions 4-9
CCiscoLineDevSpecific 4-10

Message Waiting 4-12

Message Waiting Dirn~ 4-13

Audio Stream Control ~ 4-14

Set Status Messages 4-16
Swap-Hold/SetupTransfer 4-17

Redirect Reset Original Called ID 4-18

Port Registration per Call ~ 4-18

Setting RTP Parameters for Call ~ 4-21

Redirect Set Original Called ID 4-22

Join 423

[oL-9442-01

Contents I

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Il Contents

CHAPTER B

Set User SRTP Algorithm IDs 4-24
Explicit Acquire 4-25

Explicit De-Acquire 4-26

Redirect FAC CMC 4-27

Blind Transfer FAC CMC ~ 4-28

CTI Port Third Party Monitor ~ 4-29
Send Line Open 4-30

Cisco Phone Device Specific Extensions 4-31

CCiscoPhoneDevSpecific 4-31
CCiscoPhoneDevSpecificDataPassThrough 4-32
CCiscoPhoneDevSpecificAcquire 4-33
CCiscoPhoneDevSpecificDeacquire 4-34
CCiscoPhoneDevSpecificGetRTPSnapshot 4-35

Messages 4-35

Description 4-35

Start Transmission Events ~ 4-36

Start Reception Events 4-37

Stop Transmission Events ~ 4-38

Stop Reception Events 4-38

Existing Call Events ~ 4-38

Open Logical Channel Events 4-39
LINECALLINFO_DEVSPECIFICDATA Events 4-39
Call Tone Changed Events 4-40

Message Sequence Charts 4-41

Manual Qutbound Call ~ 4-41

Blind Transfer 4-43

Redirect Set Original Called (TxToVM) 4-44

Shared Line Scenarios 4-45

Presentation Indication 4-48

Forced Authorization and Client Matter Code Scenarios
Refer / Replaces Scenarios ~ 4-60

3XX scenario 4-66

SRTP Scenario 4-67

Cisco Unified TAPI Examples 5-1

MakeCall 5-1
OpenlLine 5-2
CloseLine 55

4-53

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

Contents I

AppeEnDIX A Cisco Unified TSP Interfaces A-1

Cisco Unified TAPI Version 2.1 Interfaces A-1
Core Package A-1

INDEX

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .“

Il Contents

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
“. oL-9442-01 |

Preface

This section introduces the Cisco Unified Telephony Application Programmer’s Interface (TAPI) for
Service Providers implementation, describes the purpose of this document, and outlines the required
software. The section includes the following topics:

e Introduction

e Purpose

¢ Audience

e Organization

¢ New and Changed Information

¢ Related Documentation

¢ Required Software

¢ Conventions

¢ Obtaining Documentation

¢ Documentation Feedback

¢ Cisco Product Security Overview
¢ Obtaining Technical Assistance

¢ Obtaining Additional Publications and Information

Introduction

The Cisco Unified Telephony Application Programmer’s Interface (TAPI) comprises the set of classes
and principles of operation that constitute a telephony application programming interface. The

Cisco Unified TAPI implementations provide the interface between computer telephony applications
and telephony services. The Cisco Unified CallManager includes a TAPI Service Provider

(Cisco Unified TSP), which allows developersto create customized | P telephony applications for Cisco
users; for example, voice messaging with other TAPI compliant systems, automatic call distribution
(ACD), and caller ID screen popups. Cisco Unified TSP enables the Cisco Unified Communications
system to understand commands from the user-level application such as Cisco SoftPhone viathe
operating system.

The Cisco Unified TAPI implementation uses the Microsoft TAPI v2.1 specification and supplies
extension functions to support Cisco Unified Communications Solutions.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Preface |

M Purpose

N

Note

Purpose

Audience

To enable a Cisco Unified TAPI-based solution, you must have the following:
e TAPI support/service that is running on the operating system
e A TAPI-based software application
¢ A Cisco Unified Communications phone system

The system does not support using Cisco TAPI 2.1 TSP viathe TAPI 3.x compatibility layer.

This document describes the Cisco Unified TAPI implementation by detailing the functions that
comprise the implementation software and illustrating how to use these functions to create applications
that support the Cisco Unified Communications hardware, software, and processes. You should use this
document with the Cisco Unified CallManager manuals to devel op applications.

A primary goal of astandard Application Programming Interface (API) such as TAPI specifies providing
an unchanging programming interface under which varied implementations may stand. Cisco's goal in
implementing TAPI for the Cisco Unified CallManager platform remains to conform as closely as
possible to the TAPI specification, while providing extensions that enhance TAPI and expose the
advanced features of Cisco Unified CallManager to applications.

As new versions of Cisco Unified CallManager and Cisco Unified TSP are released, variances in the
API should be minor and should tend in the direction of compliance. Cisco stays committed to
maintaining its API extensions with the same stability and reliability, though additional extensions may
be provided as new Cisco Unified CallManager features become available.

Cisco intends this document to be for use by telephony software engineers who are devel oping Cisco
telephony applications that require TAPI. This document assumes that the engineer isfamiliar with both
the C or C++ languages and the Microsoft TAPI specification.

Organization

Chapter Description

Chapter 1, “Overview” Outlines key concepts for Cisco Unified TAPI and
ists all functions available in the implementation.

Chapter 2, “Cisco Unified TAPI Installation” Provides installation procedures for
Cisco Unified TAPI and Cisco Unified TSP.

Chapter 3, “Cisco Unified TAPI Describes the supported functions in the Cisco
I mplementation” implementation of standard Microsoft TAPI v2.1.

Chapter 4, “Cisco Device Specific Extensions” |Describes the functions that comprise the Cisco

hardware-specific implementation classes.

Chapter 5, “Cisco Unified TAPI Examples” Provides examples illustrating the use of the
Cisco Unified TAPI implementation.

Appendix A, “Cisco Unified TSP Interfaces” List APIsthat are supported or not supported.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Preface

New and Changed Information

New and Changed Information

New features and/or changes for Cisco Unified TAPI or Cisco Unified TAPI Service Provider (TSP) that
are pertinent to a specified release of Cisco Unified CallManager are described in the Release Notes for
that release.

This document contains the cumulative definition of the interface, not just the new information for the
current release.

Related Documentation

For more information about TAPI specifications, creating an application to use TAPI, or TAPI
administration, see

Microsoft TAPI 2.1 Features:
http://www.microsoft.com/ntserver/techresources/commnet/tel e/tapi 21.asp

Getting Started with Windows Telephony
http://www.microsoft.com/NT Server/commserv/depl oyment/planguides/getstartedtel e.asp

Windows Telephony APl (TAPI)
http://www.microsoft.com/NT Server/commserv/exec/overview/tapiabout.asp

Creating Next Generation Telephony Applications:
http://www.microsoft.com/NT Server/commserv/techdetail s/prodarch/tapi21wp.asp

The Microsoft Telephony Application Programming Interface (TAPI) Programmer's Reference

“For the Telephony API, Press 1; For Unimodem, Press 2; or Stay on the Line” —A paper on TAPI
by Hiroo Umeno a COMM and TAPI specialist at Microsoft.

“TAPI 2.1 Microsoft TAPI Client Management”
“TAPI 2.1 Administration Tool”

Required Software

Cisco Unified TSP reguires the following software:

Conventions

Cisco Unified CallManager version 5.0 (or later) on the Cisco Unified CallManager server
Microsoft Internet Explorer 4.01 (or later)

This document uses the following conventions:

Convention Description

boldface font Commands and keywords are in boldface.

italic font Arguments for which you supply values arein italics.
[] Elements in square brackets are optional.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

http://www.microsoft.com/ntserver/techresources/commnet/tele/tapi21.asp
http://www.microsoft.com/NTServer/commserv/deployment/planguides/getstartedtele.asp
http://www.microsoft.com/NTServer/commserv/exec/overview/tapiabout.asp
http://www.microsoft.com/NTServer/commserv/techdetails/prodarch/tapi21wp.asp

Preface |

|| Obtaining Documentation

Convention Description

{xlylz} Alternative keywords are grouped in braces and separated
by vertical bars.

[x|y]lz] Optional aternative keywords are grouped in brackets and
separated by vertical bars.

string An unquoted set of characters. Do not use quotation marks

around the string or the string will include the quotation
marks.

screen font

Terminal sessions and information that the system displays
arein screen font.

boldface screen
font

Information you must enter iSin boldface screen font.

italic screen font

Arguments for which you supply values arein italic screen
font.

This pointer highlights an important line of text

—_— in an example.

n The symbol » represents the key labeled Control—for
example, the key combination D in ascreen display means
hold down the Control key while you press the D key.

< > Nonprinting characters, such as passwords are in angle

brackets.

Notes use the following conventions:

Means reader take note. Notes contain helpful suggestions or references to material not covered in the

publication.

Tip M eans the foll owing information might help you solve a problem.
Timesaver Means the described action saves time. You can save time by performing the action described in the

paragraph.

Obtaining Documentation

Cisco documentation and additional literature are available on Cisco.com. Cisco also provides several
ways to obtain technical assistance and other technical resources. These sections explain how to obtain
technical information from Cisco Systems.

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Preface

Cisco.com

Obtaining Documentation

You can access the most current Cisco documentation at this URL:
http://www.cisco.com/univercd/home/home.htm

You can access the Cisco website at this URL:
http://www.cisco.com

You can access international Cisco websites at this URL:

http://www.cisco.com/public/countries_|anguages.shtml

Documentation DVD

Cisco documentation and additional literature are available in a Documentation DV D package, which
may have shipped with your product. The Documentation DVD is updated regularly and may be more
current than printed documentation. The Documentation DVD package is available as a single unit.

Registered Cisco.com users (Cisco direct customers) can order a Cisco Documentation DVD (product
number DOC-DOCDV D=) from the Ordering tool or Cisco Marketplace.

Cisco Ordering tool:
http://www.cisco.com/en/US/partner/ordering/
Cisco Marketplace:

http://www.cisco.com/go/marketplace/

Ordering Documentation

You can find instructions for ordering documentation at this URL:
http://www.cisco.com/univercd/cc/td/doc/es_inpck/pdi.htm
You can order Cisco documentation in these ways:

¢ Registered Cisco.com users (Cisco direct customers) can order Cisco product documentation from
the Ordering tool:

http://www.cisco.com/en/US/partner/ordering/

¢ Nonregistered Cisco.com users can order documentation through alocal account representative by
calling Cisco Systems Corporate Headquarters (California, USA) at 408 526-7208 or, elsewherein
North America, by calling 1 800 553-NETS (6387).

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

http://www.cisco.com/univercd/home/home.htm
http://www.cisco.com
http://www.cisco.com/public/countries_languages.shtml
http://www.cisco.com/en/US/partner/ordering/
http://www.cisco.com/go/marketplace/
http://www.cisco.com/univercd/cc/td/doc/es_inpck/pdi.htm
http://www.cisco.com/en/US/partner/ordering/

Preface |

M Documentation Feedback

Documentation Feedback

You can send comments about technical documentation to bug-doc@cisco.com.

You can submit comments by using the response card (if present) behind the front cover of your
document or by writing to the following address:

Cisco Systems

Attn: Customer Document Ordering
170 West Tasman Drive

San Jose, CA 95134-9883

We appreciate your comments.

Cisco Product Security Overview

Cisco provides afree online Security Vulnerability Policy portal at this URL:
http://www.cisco.com/en/US/products/products_security_vulnerability_policy.html
From this site, you can perform these tasks:

e Report security vulnerabilitiesin Cisco products.

e Obtain assistance with security incidents that involve Cisco products.

¢ Register to receive security information from Cisco.
A current list of security advisories and notices for Cisco productsis available at this URL :
http://www.cisco.com/go/psirt

If you prefer to see advisories and notices as they are updated in real time, you can access a Product
Security Incident Response Team Really Simple Syndication (PSIRT RSS) feed from this URL:

http://www.cisco.com/en/US/products/products_psirt_rss feed.html

This product contains cryptographic features and is subject to United States and local country laws
governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply
third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors
and users are responsible for compliance with U.S. and local country laws. By using this product you
agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local
laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at:
http://www.cisco.com/wwl/export/crypto/tool/stqrg.html.

If you require further assistance please contact us by sending email to export@cisco.com.

Reporting Security Problems in Cisco Products

Ciscoiscommitted to delivering secure products. Wetest our products internally before werel ease them,
and we strive to correct all vulnerabilities quickly. If you think that you might have identified a
vulnerability in a Cisco product, contact PSIRT:

e Emergencies— security-alert@cisco.com

¢ Nonemergencies— psirt@cisco.com

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

http://www.cisco.com/en/US/products/products_security_vulnerability_policy.html
http://www.cisco.com/go/psirt
http://www.cisco.com/en/US/products/products_psirt_rss_feed.html
mailto:security-alert@cisco.com
mailto:psirt@cisco.com
http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

| Preface

Tip

Obtaining Technical Assistance

We encourage you to use Pretty Good Privacy (PGP) or a compatible product to encrypt any sensitive
information that you send to Cisco. PSIRT can work from encrypted information that is compatible with
PGP versions 2.x through 8.x.

Never use arevoked or an expired encryption key. The correct public key to usein your correspondence
with PSIRT is the one that has the most recent creation date in this public key server list:

http://pgp.mit.edu: 11371/pks/l ookup?search=psirt%40ci sco.com& op=index& exact=on

In an emergency, you can also reach PSIRT by tel ephone:
e 1877 228-7302
e 1408 525-6532

Obtaining Technical Assistance

For all customers, partners, resellers, and distributors who hold valid Cisco service contracts, Cisco
Technical Support provides 24-hour-a-day, award-winning technical assistance. The Cisco Technical
Support Website on Cisco.com features extensive online support resources. In addition, Cisco Technical
Assistance Center (TAC) engineers provide telephone support. If you do not hold avalid Cisco service
contract, contact your reseller.

Cisco Technical Support Website

Note

The Cisco Technical Support Website provides online documents and tools for troubleshooting and
resolving technical issueswith Cisco products and technol ogies. The website isavailable 24 hours aday,
365 days ayear, at this URL :

http://www.cisco.com/techsupport

Accessto all tools on the Cisco Technical Support Website requires a Cisco.com user 1D and password.
If you have avalid service contract but do not have a user ID or password, you can register at this URL:

http://tools.cisco.com/RPF/register/register.do

Use the Cisco Product Identification (CPI) tool to locate your product serial number before submitting
aweb or phone request for service. You can access the CPI tool from the Cisco Technical Support
Website by clicking the Tools & Resour ceslink under Documentation & Tools. Choose Cisco Product
I dentification Tool from the Alphabetical Index drop-down list, or click the Cisco Product
Identification Tool link under Alerts & RMAs. The CPI tool offers three search options: by product ID
or model name; by tree view; or for certain products, by copying and pasting show command output.
Search results show an illustration of your product with the serial number label location highlighted.

L ocate the serial number label on your product and record the information before placing a service call.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

mailto:psirt@cisco.com
http://pgp.mit.edu:11371/pks/lookup?search=psirt%40cisco.com&op=index&exact=on
http://www.cisco.com/techsupport
http://tools.cisco.com/RPF/register/register.do

Preface |

Obtaining Additional Publications and Information

Submitting a Service Request

Using the online TAC Service Request Tool is the fastest way to open S3 and S4 service requests. (S3
and $4 service requests are those in which your network is minimally impaired or for which you reguire
product information.) After you describe your situation, the TAC Service Request Tool provides
recommended solutions. If your issue is not resolved using the recommended resources, your service
request is assigned to a Cisco TAC engineer. The TAC Service Request Tool islocated at this URL:

http://www.cisco.com/techsupport/servicerequest

For S1 or S2 servicereguests or if you do not have Internet access, contact the Cisco TAC by telephone.
(S1 or S2 service requests are those in which your production network is down or severely degraded.)
Cisco TAC engineersare assigned immediately to S1 and S2 service requeststo help keep your business
operations running smoothly.

To open a service request by telephone, use one of the following numbers:

Asia-Pacific: +61 2 8446 7411 (Australia: 1 800 805 227)
EMEA: +32 2 704 55 55
USA: 1 800 553-2447

For acomplete list of Cisco TAC contacts, go to this URL:

http://www.cisco.com/techsupport/contacts

Definitions of Service Request Severity

To ensure that all service requests are reported in a standard format, Cisco has established severity
definitions.

Severity 1 (S1)—Your network is“down,” or thereis a critical impact to your business operations. You
and Cisco will commit all necessary resources around the clock to resolve the situation.

Severity 2 (S2)—Operation of an existing network is severely degraded, or significant aspects of your
business operation are negatively affected by inadequate performance of Cisco products. You and Cisco
will commit full-time resources during normal business hours to resolve the situation.

Severity 3 (S3)—Operational performance of your network isimpaired, but most business operations
remain functional. You and Cisco will commit resources during normal business hoursto restore service
to satisfactory levels.

Severity 4 (S4)—You require information or assistance with Cisco product capabilities, installation, or
configuration. Thereis little or no effect on your business operations.

Obtaining Additional Publications and Information

Information about Cisco products, technol ogies, and network solutionsis available from various online
and printed sources.

e Cisco Marketplace provides avariety of Cisco books, reference guides, and |ogo merchandise. Visit
Cisco Marketplace, the company store, at this URL:

http://www.cisco.com/go/marketplace/

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

http://www.cisco.com/techsupport/servicerequest
http://www.cisco.com/techsupport/contacts
http://www.cisco.com/go/marketplace/

| Preface

Obtaining Additional Publications and Information

Cisco Press publishes awide range of general networking, training and certification titles. Both new
and experienced users will benefit from these publications. For current Cisco Press titles and other
information, go to Cisco Press at this URL:

http://www.ciscopress.com

Packet magazine is the Cisco Systems technical user magazine for maximizing Internet and
networking investments. Each quarter, Packet delivers coverage of the latest industry trends,
technology breakthroughs, and Cisco products and solutions, as well as network deployment and
troubleshooting tips, configuration examples, customer case studies, certification and training
information, and links to scores of in-depth online resources. You can access Packet magazine at:

http://www.cisco.com/packet

iQ Magazine is the quarterly publication from Cisco Systems designed to help growing companies
learn how they can use technology to increase revenue, streamline their business, and expand
services. The publication identifies the challenges facing these companies and the technol ogies to
help solve them, using real-world case studies and business strategies to help readers make sound
technology investment decisions. You can access iQ Magazine at this URL:

http://www.cisco.com/go/igmagazine

Internet Protocol Journal is a quarterly journal published by Cisco Systems for engineering
professionals involved in designing, developing, and operating public and private internets and
intranets. You can access the Internet Protocol Journal at this URL:

http://www.cisco.com/ipj

World-class networking training is available from Cisco. You can view current offerings at
this URL:

http://www.cisco.com/en/US/learning/index.html

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

http://www.cisco.com/go/marketplace/
http://www.ciscopress.com
http://www.cisco.com/packet
http://www.cisco.com/go/iqmagazine
http://www.cisco.com/ipj
http://www.cisco.com/en/US/learning/index.html

Preface |

|| Obtaining Additional Publications and Information

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
m. oL-9442-01 |

CHAPTER 1

Overview

This chapter outlines the key concepts that are involved in using Cisco Unified TAPI service provider
(Cisco Unified TSP) and lists the functions available in the Cisco Unified CallManager Release 5.0
implementation. The Cisco Unified TAPI service provider shipped with Cisco Unified CallManager
Release 5.0 is TAPI version 2.1.

Cisco Unified TSP 5.0 Functions

The following list includes all the functions that are available in the Cisco TSP implementation for
Cisco Unified CallManager Release 5.0:

e Call Control

e CTI Port

¢ Dynamic Port Registration

¢ CTI Route Point

¢ Media Termination at Route Point

e CTI Manager (Cluster Support)

e Supported Device Types

e Forwarding

¢ Redirect and Blind Transfer

¢ Extension Mobility Support

¢ Directory Change Notification Handling
¢ Monitoring Call Park Directory Numbers
e Multiple Cisco Unified TSPs

¢ Multiple Calls per Line Appearance

e Shared Line Appearance

e Select Calls

e Direct Transfer

e Join

¢ Privacy Release

e Barge and cBarge

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter1 Overview |

Hl call Control

¢ Cisco Unified TSP Auto Update Functionality
e QoS Support

¢ Presentation Indication (PI)

e Compatibility

e Unicode Support

e TLS Support

e SRTP Support

e FAC/CMC Support

e CTI Port Third Party Monitoring Port
e CTI DevicelLine Restriction

e XSI Object Pass Through

Call Control

You can configure Cisco Unified TSP to provide first- or third-party call control.

First-Party Call Control

In first-party call control, the application terminates the audio stream. Ordinarily, this occurs using the
Cisco wave driver. However, if you want the application to control the audio stream instead of the wave
driver, use the Cisco Device Specific extensions.

Third-Party Call Control

CTl Port

In third-party call control, the control of an audio stream terminating device is not “local” to the
Cisco Unified CallManager. In such cases, the controller might be the physical IP phone on your desk
or agroup of IP phones for which your application is responsible.

For first-party call control, aCTI port device must exist in the Cisco Unified CallManager. Because each
port can only have one active audio stream at a time, most configurations only need one line per port.

A CTI port device does not actually exist in the system until you run a TAPI application and aline on
the port device is opened requesting LINEMEDIAMODE_AUTOMATEDVOICE and
LINEMEDIAMODE_INTERACTIVEVOICE. Until the port is opened, anyone calling the directory
number associated with that CTI port device receives a busy or reorder tone.

The IP address and UDP port number is either specified statically (the same IP address and UDP port
number is used for every call) or dynamically. By default, CTI Ports use static registration.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter1

Overview

Dynamic Port Registration

Dynamic Port Registration

The purpose of the Dynamic Port Registration feature is to allow applications to specify the |P address
and UDP port number on a call-by-call basis. Currently, the IP address and UDP port number are
specified when aCTI Port registers and is static through the life of the registration of the CTI Port. When
media is requested to be established to the CTI Port, the same static | P address and UDP port number is
used for every call.

An application that wishes to use Dynamic Port Registration must specify the | P address and UDP port
number on acall before invoking any features onthe call. If the featureisinvoked before the I P address
and UDP port number are set, the feature will fail and the call state will be set depending on when the
media timeout occurs.

CTl Route Point

You can use Cisco Unified TAPI to control CTI route points. CTI route pointsallow Cisco Unified TAPI
applications to redirect incoming calls with an infinite queue depth. This allows incoming calls to avoid
busy signals.

CTI route point devices have an address capability flag of LINEADDRCAPFLAGS ROUTEPOINT.
When your application opens aline of this type, it can handle any incoming call by disconnecting,
accepting, or redirecting the call to some other directory number. The basis for redirection decisions can
be caller ID information, time of day, or other information that is available to the program.

Media Termination at Route Point

The purpose of the Media Termination at Route Point featureisto allow applications to terminate media
at route points. Thisfeature enables applications to passthe |P address and port number where they want
the call at the route point to have media established.

Following are the features supported at route points:
e Answer
e Multiple active calls
¢ Redirect
e Hold
e UnHold
e Blind Transfer
e DTMF Digits

e Tones

CTI Manager (Cluster Support)

The CTI Manager, along with the Cisco Unified TSP, provide an abstraction of the
Cisco Unified CallManager cluster that allows TAPI applications to access Cisco Unified CallManager
resources and functionality without being aware of any specific Cisco Unified CallManager.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter1 Overview |

I CTIManager (Cluster Support)

The Cisco Unified CallManager cluster abstraction also enhances the failover capability of CTI
Manager resources. A failover condition occurs when a Cisco Unified CallManager node fails, a CTI
Manager fails, or a TAPI application fails, asillustrated in Figure 1-1.

Figure 1-1 Cluster Support Architecture
CTI Manager
TAP| application (primary) CallManagers

N
Cisco TSP ~

CTI Manager
(secondary)

63102

Cisco Unified CallManager Failure

When a Cisco Unified CallManager node in a cluster fails, the CTI Manager recovers the affected CTI
ports and route points by reopening these devices on another Cisco Unified CallManager node. When

the failure isfirst detected, Cisco Unified TSP sends a PHONE_STATE (PHONESTATE_SUSPEND)

message to the TAPI application.

When the CTI port/route point is successfully reopened on another Cisco Unified CallM anager,

Cisco Unified TSP sends a phone PHONE_STATE (PHONESTATE_RESUME) message to the TAPI
application. If no Cisco Unified CallManager is available, the CTI Manager waits until an appropriate
Cisco Unified CallManager comes back in service and tries to open the device again. The lines on the
affected device also go out of service and in service with the corresponding LINE_LINEDEV STATE
(LINEDEVSTATE_OUTOFSERVICE) and LINE_LINEDEV STATE (LINEDEV STATE_INSERVICE)
events sent by Cisco Unified TSP to the TAPI application. If for some reason the device or lines cannot
be opened, even when all Cisco Unified CallManagers come back in service, the devices or lines are
closed, and Cisco Unified TSP will send PHONE_CL OSE or LINE_CLOSE messages to the TAPI
application.

When afailed Cisco Unified CallManager node comes back in service, CTI Manager “re-homes’ the
affected CTI ports or route points back to their original Cisco Unified CallManager. The graceful
re-homing process ensures that the re-homing only starts when calls are no longer being processed or
are active on the affected device. For this reason, the re-homing process may not finish for along time,
especially for route points, which can handle many simultaneous calls.

When a Cisco Unified CallManager node fails, phones currently re-home to another

Cisco Unified CallManager node in the same cluster. If a TAPI application has a phone device opened
and the phone goes through the re-homing process, CTl Manager automatically recoversthat device, and
Cisco Unified TSP sends a PHONE_STATE (PHONESTATE_SUSPEND) message to the TAPI
application. When the phone successfully re-homes to another Cisco Unified CallManager node,
Cisco Unified TSP sends a PHONE_STATE (PHONESTATE_RESUME) message to the TAPI
application.

The lines on the affected device also go out of service and in service and Cisco Unified TSP sends
LINE_LINEDEVSTATE (LINEDEV STATE_OUTOFSERVICE) and LINE_LINEDEV STATE
(LINEDEV STATE_INSERVICE) messages to the TAPI application.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter1

Overview

Supported Device Types

Call Survivability

When adevice or Cisco Unified CallManager failure occurs, no call survivability exists; however, media
streams that are already connected between devices will survive. Callsin the process of being set up or
modified (transfer, conference, redirect) simply get dropped.

CTI Manager Failure

When aprimary CTI Manager fails, Cisco Unified TSP sends a PHONE_STATE
(PHONESTATE_SUSPEND) message and a LINE_LINEDEV STATE

(LINEDEV STATE_OUTOFSERVICE) message for every phone and line device that the application
opened. Cisco Unified TSP then connectsto abackup CTIManager. When aconnection to abackup CTI
Manager is established and the device or line successfully reopens, the Cisco Unified TSP sends a
PHONE_STATE (PHONESTATE_RESUME) or LINE_LINEDEV STATE

(LINEDEV STATE_INSERVICE) message to the TAPI application. If the Cisco Unified TSP is
unsuccessful in opening the device or line for a CTI port or route point, the Cisco Unified TSP closes
the device or line by sending the appropriate PHONE_CL OSE or LINE_CL OSE message to the TAPI
application.

After Cisco Unified TSP is connected to the backup CTIManager, Cisco Unified TSP will not reconnect
to the primary CTIManager until the connection is lost between Cisco Unified TSP and the backup
CTIManager.

If devices are added to or removed from the user while the CTI Manager is down, Cisco Unified TSP
generates PHONE_CREATE/LINE_CREATE or PHONE_REMOVE/LINE_REMOVE events,
respectively, when connection to a backup CTI Manager is established.

Cisco Unified TAPI Application Failure

When a Cisco TAPI application fails, that is, the CTI Manager closesthe provider, callsat CTI portsand
route points that have not yet been terminated get redirected to the Call Forward On Failure (CFF)
number that has been configured for them. New callsinto CTI Ports and Route Points that are not opened
by an application are routed to their CFNA number.

Supported Device Types

Cisco Unified TSP supports the following device types:

e 30 SP+ (This device has spurious offhook problems, not recommended.)
e 12 SP+ (This device has spurious offhook problems, not recommended.)
e 12 SP (This device has spurious offhook problems, not recommended.)
e 7835

e 7902

e 7905

e 7910

e 7912

e 7914

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter1 Overview |

W Forwarding

e 7940

e 7960

e 7965

e 7970

¢ CTI Route Points

e CTI Ports

e V(G248 Analog Devices
e ATA186 Anaog Devices

Forwarding

Cisco Unified TSP now provides added support for the lineForward() request to set and clear ForwardAll
information on aline. Thiswill allow TAPI applications to set the Call Forward All setting for a
particular line device. Activating this feature will allow users to set the call forwarding Unconditionally
to aforward destination.

Cisco Unified TSP sends LINE_ADDRESSSTATE messages when lineForward() requests successfully
complete. These events also get sent when call forward indications are obtained from the CTI, indicating
that a change in forward status has been received from athird party, such as the Cisco Unified
CallManager Administration or another application setting call forward all.

Redirect and Blind Transfer

The Cisco Unified TSP supports several different methods of Redirect and Blind Transfer. This section
outlines the different methods as well as the differences between each method.

lineRedirect

Thisisthe standard TAPI lineRedirect function. It isused to redirect calls to a specified destination.
The Calling Search Space and Original Called Party used by Cisco Unified TSP for this function are as
follows:

e Calling Search Space (CSS) — Uses CSS of the CallingParty (the party being redirected) for all
cases unlessthe call isin aconference or amember of atwo-party conference whereit usesthe CSS
of the RedirectingParty (the party that is doing the redirect).

e Original Called Party — not changed.

lineDevSpecific — Redirect Reset Original Called ID

This function isused to redirect callsto a specified destination while resetting the Original Called Party
to the party that is redirecting the call. The Calling Search Space and Original Called Party used by
Cisco Unified TSP for this function are as follows:

e Calling Search Space (CSS) — Uses CSS of the CallingParty (the party being redirected).
e Original Called Party — set to the RedirectingParty (the party that is redirecting the call).

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter1 Overview

Redirect and Blind Transfer

lineDevSpecific — Redirect Set Original Called ID

Thisfunction is used to redirect callsto a specified destination while allowing the application to set the
Original Called Party to any value. The Calling Search Space and Original Called Party used by
Cisco Unified TSP for this function are as follows:

e Calling Search Space (CSS) — Uses CSS of the CallingParty (the party being redirected).

e Original Called Party — set to the preferredOriginal CalledI D specified in the lineDevSpecific
function.

Thisrequest can be used to implement the Transfer to Voice Mail feature (TxToVM). Using this feature,
applications can transfer the call on aline directly to another line’s voice mailbox. TxToVM can be
achieved by specifying the following fields in the above request: voice mail pilot as the destination DN
and the DN of the line to whose voice mail box the call isto be transferred as the
preferredOriginalCalledID.

lineDevSpecific — Redirect FAC CMC

Thisfunction is used to redirect callsto a specified destination that requires either aFAC, CMC, or both.
The Calling Search Space and Original Called Party used by Cisco Unified TSP for this function are as
follows:

e Calling Search Space (CSS) — Uses CSS of the CallingParty (the party being redirected).
e Original Called Party — not changed.

lineBlindTransfer

Thisisthe standard TAPI lineBlindTransfer function. It is used to blind transfer calls to a specified
destination. The Calling Search Space and Original Called Party used by Cisco Unified TSP for this
function are as follows:

e Calling Search Space (CSS) — Uses CSS of the TransferringParty (the party that is transferring
the call).

e Original Called Party — set to the TransferringParty (the party that is transferring the call).

lineDevSpecific - BlindTransfer FAC CMC

This function is used to blind transfer calls to a specified destination that requires either a FAC, CMC,
or both. The Calling Search Space and Original Called Party used by Cisco Unified TSP for this
function are as follows:

e Calling Search Space (CSS) — Uses CSS of the TransferringParty (the party that is transferring
the call).

e Original Called Party — set to the TransferringParty (the party that is transferring the call).

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter1 Overview |

I Extension Mobility Support

Extension Mobility Support

Extension Mobility, a Cisco Unified CallManager feature, allows a user to log in and | og out of a phone.
Cisco Unified CallManager Extension Mobility loads a user Device Profile (including line, speed dial
numbers, and so on) onto the phone when the user logsin.

Cisco Unified TSP recognizes a user who islogged into a device as the Cisco Unified TSP User.

Using the Cisco Unified CallManager Administration pages, you can associate a list of controlled
devices with a user.

When the Cisco Unified TSP user logs into the device, the lines that are listed in the user's Extension
Mobility profile are placed on the phone device, and lines previously on the phone are removed. If the
device is not in the controlled device list for the Cisco Unified TSP User, the application receives a
PHONE_CREATE or LINE_CREATE message. If the device isin the controlled list, the application
receives a LINE_CREATE message for the added line and aLINE_REMOVE message for the removed
line.

When the user logs out, the original lines get restored. For a non-controlled device, the application
perceives a PHONE_REMOVE or LINE_REMOVE message. For a controlled device, it perceives a
LINE_CREATE message for an added line and a LINE_REMOVE message for a removed line.

Directory Change Notification Handling

The Cisco Unified TSP sends notification events when a device has been added to or removed from the
user's controlled device list in the directory. Cisco Unified TSP sends events when the user is deleted
from the Cisco Unified CallManager Administration pages.

Cisco Unified TSP sends a LINE_CREATE or PHONE_CREATE message when a device is added to a
users' control list.

It sendsaLINE_REMOVE or PHONE_REMOVE message when a device is removed from the user's
controlled list or the device is removed from database.

When the Cisco Unified CallManager system administrator deletes the current user, Cisco Unified TSP
generates aLINE_CLOSE and PHONE_CL OSE message for each open line and open phone. After
doing this, it sendsa LINE_REMOVE and PHONE_REMOVE message for all lines and phones.

Note Cisco Unified TSP generates PHONE_REMOVE / PHONE_CREATE messages only if the application
called the phonel nitialize function earlier.

Change notification is generated if the device is added to or removed from the user by using the
Cisco Unified CallManager Administration pages or Bulk Administration Tool (BAT).

If you program against the LDAP directory, change notification does not generate.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter1

Overview

Monitoring Call Park Directory Numbers

Monitoring Call Park Directory Numbers

The Cisco Unified TSP supports monitoring calls on lines that represent Cisco Unified CallManager
Call Park Directory Numbers (Call Park DNs). The Cisco Unified TSP uses a device-specific extension
inthe LINEDEV CAPS structure that allows TAPI applications to differentiate Call Park DN lines from
other lines. If an application opens a Call Park DN line, all calls that are parked to the Call Park DN get
reported to the application. The application cannot perform any call control functions on any calls at a
Call Park DN.

To open Call Park DN lines, you must check the Monitor Call Park DNs check box in the
Cisco Unified CallManager User Administration for the Cisco Unified TSP user. Otherwise, the
application will not perceive any of the Call Park DN lines upon initialization.

Multiple Cisco Unified TSPs

In the Cisco Unified TAPI solution, the TAPI application and Cisco Unified TSP get installed on the
same machine. The Cisco Unified TAPI application and Cisco Unified TSP do not directly interface
with each other. A layer written by Microsoft sits between the TAPI application and Cisco Unified TSP.
This layer, known as TAPISRV, allows the installation of multiple TSPs on the same machine, and it
hides that fact from the Cisco Unified TAPI application. The only difference to the TAPI applicationis
that it is now informed that there are more lines that it can control.

Consider an example—assume that Cisco Unified TSP1 exposes 100 lines, and Cisco Unified TSP2
exposes 100 lines. In the single Cisco Unified TSP architecture where Cisco Unified TSP1 is the only
Cisco Unified TSP that isinstalled, Cisco Unified TSP1 would tell TAPISRV that it supports 100 lines,
and TAPISRV would tell the application that it can control 100 lines. In the multiple Cisco Unified TSP
architecture, where both Cisco Unified TSPs are installed, this means that Cisco Unified TSP1 would
tell TAPISRV that it supports 100 lines, and Cisco Unified TSP2 would tell TAPISRV that it supports
100 lines. TAPISRV would add the lines and inform the application that it now supports 200 lines. The
application communicates with TAPISRV, and TAPISRV takes care of communicating with the correct
Cisco Unified TSP,

Ensure that each Cisco Unified TSP is configured with a different username and password that you
administer in the Cisco Unified CallManager Directory. Configure each user in the Directory so devices
that are associated with each user do not overlap. Each Cisco Unified TSP in the multiple

Cisco Unified TSP system does hot communicate with the others. Each Cisco Unified TSP in the
multiple Cisco Unified TSP system creates a separate CT| connection to the CTI Manager as shown in
Figure 1-2. Multiple Cisco Unified TSPs help in scalability and higher performance.

Figure 1-2 Mutiple Cisco Unified TSPs Connect to CTlI Manager

Cisco TSP ?@“ﬁ'@

CTI Manager

CallManagers

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter1 Overview |

I Multiple Calls per Line Appearance

Multiple Calls per Line Appearance

Maximum Number of Calls

Busy Trigger

CFNA Timer

The maximum number of calls per Line Appearance is database configurable. This means that the
Cisco Unified TSP supports more than two calls per line on MCD (Multiple Call Display) devices. An
MCD deviceis a device that can display more than two call instances per DN at any given time. For
non-MCD devices, the Cisco Unified TSP supports a maximum of two calls per line. The absolute
maximum number of calls per line appearance is 200.

In Cisco Unified CallManager there is a setting, busy trigger, that indicates the limit on the number of
calls per line appearance before Cisco Unified CallManager will reject an incoming call. The busy
trigger setting is database configurable, per line appearance, per cluster. The busy trigger setting replaces
the old call waiting flag per DN. The busy trigger setting cannot be modified using the

Cisco Unified TSP.

The Call Forward No Answer (CFNA) timer is database configurable, per DN, per cluster. Thistimer is
not configurable using Cisco Unified TSP.

Shared Line Appearance

Cisco Unified TSP supports opening two different lines that each share the same DN. Each of these lines
is known as a Shared Line Appearance.

The CUnified CMallows multiple active calls to exist concurrently on each of the different devices that
share the same line appearance. Each device is still limited to, at most, one active call and multiple hold
or incoming calls at any given time. This functionality can be supported by applications that use the
Cisco Unified TSP to monitor and control shared line appearances.

If acall isactiveon alinethat is a shared line appearance with another line, then the call appears on the
other line with the dwCall State=CONNECTED and the dwCal | StateM ode=I NACTIV E. Even though the
call party information may not be displayed on the actual 1P Phone for the call at the other line, the call
party information is still reported by Cisco Unified TSP on the call at the other line. This gives the
application the ability to decide if it wishes to block this information or not. Also, no call control
functions are allowed on acall that isin the CONNECTED INACTIVE call state.

Cisco Unified TSP does not support shared lines on CTI Route Point devices.

In the scenario where alineiscalling a DN that contains multiple shared lines, the dwCallediIDNamein
the LINECALLINFO structure for the line with the outbound call may be empty or set randomly to the
name of one of the shared DN’s. The reason for this should be obvious as Cisco Unified TSP and the
Cisco Unified CallManager cannot resolve which of the shared DN’s you are calling until the call is
answered.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter1

Overview

Select Calls W

Select Calls

Thereisasoftkey “ Select” on the P Phones that allows a user the ability to select call instancesin order
to perform feature activation, such as transfer or conference, on those calls. The action of selecting a
call onalinelocksthat call so that it cannot be selected by any of the shared line appearances. Pressing
the “ Select” key on a selected call will de-select the call.

The ability to select callsis not supported by Cisco Unified TSP. Thereason for thisisthat all of the
Transfer and Conference functions contain parameters indicating which calls the operation should be
invoked on. Therefore, there is no reason to support “Select” through Cisco Unified TSP.

Cisco Unified TSP supports the events caused by a user selecting acall on aline that is being monitored
by the application. When acall on alineis selected, all of the other lines that share the same line
appearance will see the call state change to dwCall State=CONNECTED, and
dwCallStateMode=INACTIVE.

Direct Transfer

Join

In Unified CM, a softkey, “Direct Transfer,” is provided to transfer the other end of one established call
to the other end of another established call, while dropping the feature initiator from those two calls.
Here, an established call refers to acall that is either in the onhold state or in the connected state. The
“Direct Transfer” feature does not initiate a consultation call and does not put the active call onhold.

A TAPI application can invoke the “Direct Transfer” feature using the TAPI lineCompleteTransfer()
function on two callsthat are already in the established state. This also means that the two calls do not
have to be initially set up using the lineSetupTransfer() function.

In Unified CM, a softkey, “Join,” is provided to join all the parties of established calls (at least two) into
one conference call. The “Join” feature does not initiate a consultation call and does not put the active
call onhold. It al'so can include more than 2 calls, resulting in a call with more than 3 parties.

Cisco Unified TSP exposes the “Join” feature as a new device specific function which is known as
lineDevSpecific() — Join. This function can be performed on two or more calls that are already in the
established state. This also means that the two calls do not have to beinitially set up using the
lineSetupConference() or linePrepareAddToConference() functions.

Cisco Unified TSP also supports the lineCompleteTransfer() function with
dwTransferMode=Conference. Thisfunction allowsaTAPI applicationtojoin all the parties of two, and
only two, established calls into one conference call.

Cisco Unified TSP also supports the lineAddToConference() function to join a call to an existing
conference call that isin the ONHOLD state.

There is a feature interaction issue involving Join, Shared Lines, and the Maximum Number of Calls.
The issue occurs when you have two shared lines and the maximum number of calls on onelineisless
than the maximum number of calls on the other line. If aJoin is performed on the line that has more
maximum calls, then thisissue will be encountered if the primary call of the Join isbeyond the maximum
number of calls for the other shared line.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter1 Overview |

I Privacy Release
For example, in ascenario where one shared line, A, has amaximum number of callsset to 5 and another
shared line, A’, has a maximum number of calls set to 2. The scenario involves the following steps:
A calls B. B answers. A puts the call onhold.
CcalsA. A answers. C putsthecall onhold.
At this point, line A has two callsin the ONHOLD state and line A’ has two callsin the
CONNECTED_INACTIVE state.
D calls A. A answers.
At this point, the call will be presented to A, but it will not be presented to A’. The reason for thisis
because the maximum calls for A’ is set to 2.
A performs a Join operation either through the phone or using the lineDevSpecific — Join API tojoin all
the parties in the conference. It usesthe call between A and D as the primary call of the Join operation.
Because the call between A and D was used as the primary call of the Join, the ensuing conference call
will not be presented to A’. Both callson A’ will go tothe IDLE state. The end result isthat A’ will not
see the conference call that exists on A.

Privacy Release

The Cisco Unified CallManager Privacy Release feature allows the user to dynamically alter its privacy
setting. The privacy setting affects all existing and future calls on the device.

Cisco Unified TSP does not support the Privacy Release feature.

Barge and cBarge

The Barge and cBarge features are supported in Cisco Unified CallManager. The Barge feature uses the
built-in conference bridge and cBarge uses the shared conference resource in Cisco Unified CallManager.

Cisco Unified TSP supports the events caused by the invocation of the Barge and cBarge features. It
does not support invoking either Barge or cBarge through an API of Cisco Unified TSP.

Cisco Unified TSP Auto Update Functionality

Cisco Unified TSP supports auto update functionality so that the latest plug-in can be downloaded and
installed on a client machine. The new plug-in will be QBE compatible with the connected CTIM anager.
When the Cisco Unified CallManager is upgraded to a higher version, and Cisco Unified TSP auto
update functionality isenabled, the user will receive the latest compatible Cisco Unified TSP, which will
work with the upgraded Cisco Unified CallManager. This makes sure that the applications work as
expected with the new release of Cisco Unified CallManager (provided the new call manager interface
is backward compatible with the TAPI interface). Cisco Unified TSP installed locally on the client
machine allows applications to set the auto update options as part of the Cisco Unified TSP
configuration. The user can opt for updating Cisco Unified TSP in following different ways:

e Update Cisco Unified TSP whenever adifferent version (higher version than the existing version) is
available on the Cisco Unified CallManager server.

e Update Cisco Unified TSP whenever thereisa QBE protocol version mismatch between the existing
Cisco Unified TSP and the Cisco Unified CallManager version.

e Do not update Cisco Unified TSP using Auto Update functionality.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter1 Overview

QoS Support W

QoS Support

Cisco Unified TSP supports the Cisco baseline for baselining of Quality of Service (Qo0S).

Cisco Unified TSP marks the |IP DSCP (Differentiated Services Code Point) for QBE control signals
flowing from TSP to CTI with the value of the Cisco Unified CallM anager Service parameter “DSCP | P
for CTI Applications” assent by CTI in the ProviderOpenCompletedEvent. The Cisco TAPI Wavedriver
marksthe RTP packetswith thevaluethat is sent by CTI in the StartTransmissionEvent. The DSCP value
received in the StartTransmissionEvent is stored in the DevSpecific portion of the LINECALLINFO
structure and the LINECALLINFOSTATE_DEVSPECIFIC event with the QoS indicator is fired.

Presentation Indication (PI)

There is a need to separate the presentability aspects of a number (calling, called, and so on) from the
actual number itself. For example, when the number is not to be displayed on the IP phone, the
information might still be needed by another system, such as Unity VM. Hence, each number/name of
the display name needs to be associated with a Presentation Indication (PI) flag, which will indicate
whether the information should be displayed to the user or not.

This feature can be setup as follows:

On a Per Call Basis

Route Patterns and Translation Patterns can be used to set or reset Pl flags for various partyDNs/Names
on aper call basis. If the pattern matches the digits, then the Pl settings associated with the pattern will
be applied to the call information.

On a Permanent Basis
A trunk device can be configured with “Allow” or “Restrict” optionsfor parties. Thiswill set the Pl flags
for the corresponding party information for all calls from this trunk.

Cisco Unified TSP supports this feature. If calls are made via Translation patterns with al of the flags
set to Restricted then the CallerlD/Name, Connectedl D/Name and Redirectionl D/Name will be sent to
applicationsasBlank. TheLINECALLPARTY ID flagswill also be set to Blocked if both the Name and
Party number are set to Restricted.

Compatibility

The Cisco TAPI Service Provider isa TAPI 2.1 service provider.

When devel oping an application, be sure only to use functions supported by the Cisco TAPI Service
Provider. For example, transfer is supported, but fax detection is not. If an application requires a media
or bearer mode that is not supported, then it will not work as expected.

Cisco Unified TSP does not support TAPI 3.0 applications.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter1 Overview |

Il Unicode Support

Unicode Support

Cisco Unified TSP provides support for Unicode character sets.

Cisco Unified TSP will send Unicode party names to the application in all call events. The party name
needsto be configured in the CUnified CMadmin pages. This support islimited to only party names. The
locale information is also sent to the application. The UCS-2 encoding for Unicode is used.

The party names will be in the DevSpecific portion of the LINECALLINFO structure.

TLS Support

Cisco Unified TSP will start supporting security for signalling and media. It will take care of providing
secure CTl QBE signalling through TLS. Thiswill help prevent security attacks like man in the middle,
spoofing, and eavesdropping. Signaling datawill be passed over a secure channel and will be encrypted.
The data on this secure connection can not be viewed by any third party on the network. TL S support
provides secure, encrypted and authenticated signaling communication stream between TSP/CTI
applications and the CTIManager. This secure signaling path would be used for SRTP keys exchange for
media security as well.

SRTP Support

Secure RTP feature is supported from this release. Detail SRTP key information will be reported to
applciaiton if thereis secure connection to CTIManager and the appl caition user is authorized to receive
SRTP information. However there is will be no SRTP key information available for mid-call event,
except secure mediaindicator. And the secure mediaindicator for each call on the device will be sent as
LineCallDevSpecific event upon PhoneDevSpecific request with
CPDST_REQUEST_RTP_SNAPSHOT_INFO message type.

During device registration, application has an option to specify algorithm Ids for SRTP feature.

FAC/CMC Support

There are two CallManager features, Forced Authorization Code (FAC) and Client Matter Code (CMC),
that the Cisco Unified TSP supports and interacts with. The FAC feature all ows the System
Administrator the ability to require users to enter an authorization code in order to reach certain dialed
numbers. The CMC feature allows the System Administrator the ability to require usersto enter aclient
matter code in order to reach certain dialed numbers.

The CallManager alerts a user of aphone that a FAC or CMC must be entered by sending a “ZipZip”
tone to the phone which the phone in turn plays to the user. Cisco Unified TSP will send a new
LINE_DEV SPECIFIC event to the application whenever a“ZipZip” tone isto be played by the
application. This can be used by the application to indicate when a FAC or CMC isreguired. For an
application to start receiving the new LINE_DEV SPECIFIC event, it must perform the following steps:

1. lineOpen with dwExtVersion set to 0x00050000 or higher
2. lineDevSpecific — Set Status Messages to turn on the Call Tone Changed device specific events

The FAC or CMC code can be entered by the application using the lineDial() API. The code may be
entered in its entirety or it may be entered one digit at atime. An application may also enter the FAC
and CMC code in the same string as long as they are separated by a“#” character and also ended with a
“#" character. The “#" character at the end is optional as it only servesto indicate dialing is compl ete.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter1

Overview

CTI Port Third Party Monitoring Port 1l

If an application does a lineRedirect() or alineBlindTransfer() to a destination that requires a FAC or
CMC, then Cisco Unified TSP will return an error. The error returned by Cisco Unified TSP indicates
whether a FAC, CMC, or both is required. Cisco Unified TSP supports two new lineDevSpecific()
functions, one for Redirect and one for BlindTransfer, that will allow an application to enter a FAC or
CMC, or both, when either Redirecting or Blind Transferring a call.

CTI Port Third Party Monitoring Port

Opening aCT]I port devicein first party mode means that either the application is terminating the media
itself at the CTI port or that the application is using the Cisco Wave Drivers to terminate the media at
the CTI port. Thisis also known as registering the CTI port device.

Opening a CTI port in third party mode means that the application isinterested in just opening the CTI
port device, but it does not want to handle the mediatermination at the CTI port device. An example of
this would be a case where an application would want to open a CTI port in third party mode because it
isinterested in monitoring a CTI port device that has already been opened/registered by another
application infirst party mode. Please notethat opening aCTI Port in third party mode does not prohibit
the application from performing call control operations on the line or on the calls of that line.

Cisco Unified TSP allows TAPI applications to open a CTI port device in third party mode via the
lineDevSpecific API, provided, the application has negotiated at least extension version 5.0 and set the
high order bit so that the extension version is set to at least 0x80050000.

The TAPI architecture allows two different TAPI applications to be running on the same PC using the
same Cisco Unified TSP. Inthissituation, if both applications want to open the CTI port, there could be
problems. Therefore, the first application to open the CTI port will control which mode in which the
second application is allowed to open the CTI port. In other words, both or all applications running on
the same PC, using the same Cisco Unified TSP, must open CTI ports in the same mode in order to be
successful. If the second application tries to open the CTI port in a mode that is different from the way
in which the first application opened it, then the lineDevSpecific() request will fail.

CTl Device/Line Restriction

With CTI Device/Linerestriction implementation, a CTIRestricted flag will be placed on deviceor line
basis. When adevice isrestricted, it will assume al its configured lines are restricted.

Cisco Unified TSP will not report any restricted devices and lines back to applcaition. And when a
CTIRestricted flag is changed from CUnified CMadmin, Cisco Unified TSP will treat it as normal
device/line add or removal.

XSI Object Pass Through

XSl-enabled IP phones allow applications to directly communicate with the phone and access X SI
features, such as manipulate display, get user input, play tone, and so on. In order to allow TAPI
applications access to the X S| capabilities without having to set up and maintain an independent
connection directly to the phone, TAPI provides the ability to send the device data through the CTI
interface. This feature is exposed as a Cisco Unified TSP device-specific extension.

Only PhoneDevSpecificDataPassthrough request is supported for the I P phone devices.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter1 Overview |

I XSl Object Pass Through

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
m. oL-9442-01 |

CHAPTER 2

Cisco Unified TAPI Installation

This chapter describes how to install and configure the Cisco Unified Telephony Application
Programming Interface (TAPI) client software for Cisco Unified CallManager 5.0 and later releases.

This chapter contains the following topics:
¢ Introduction
¢ Installing the Cisco Unified TSP
e Activating the Cisco Unified TSP
¢ Configuring the Cisco Unified TSP
e Cisco Unified TSP Configuration Settings
¢ Installing the Wave Driver
e Saving Wave Driver Information
¢ Verifying the Wave Driver Exists
¢ Verifying the Cisco Unified TSP Installation
e Setting Up Client-Server Configuration
e Uninstalling the Wave Driver
¢ Removing the Cisco Unified TSP
¢ Managing the Cisco Unified TSP

Introduction

The Cisco Unified TAPI Service Provider (Cisco Unified TSP) allows developers to create customized
I P telephony applications for Cisco users; for example, voice mail with other TAPI-compliant systems,
automatic call distribution (ACD), and caller ID screen pops. Cisco Unified TSP enables the

Cisco Unified Communications system (Cisco Unified CallManager) to understand commands from a
user-level TAPI application.

The Cisco Unified TAPI solution allows you to install multiple Cisco Unified TAPI Service Providers
(TSPs) on the same machine. This configuration allows TAPI applications to increase the number of
linesthat can be supported and to increase the amount of call traffic. Configure each Cisco Unified TSP
with a different username and password that is administered in the Cisco Unified CallManager
Directory. Configure each user in the Directory, so no two users are associated to the same device. TSPs
in the multiple TSP system do not communicate with each other and create a separate computer
telephony integration (CTI) connection to the Cisco Unified CallManager.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter2 Cisco Unified TAPI Installation |

I Installing the Cisco Unified TSP

~

Note

If you have upgraded to Cisco Unified CallManager 5.0, you must upgrade the TAPI client software on
any application server or client workstation on which your TAPI applications areinstalled. If you do not
upgrade the TAPI client, your application will fail to initialize. To upgrade, download the appropriate
client from the Cisco Unified CallManager Administration pages as described in the “Installing the
Cisco Unified TSP” section.

The upgraded TAPI client software does not work with previous releases of Cisco Unified CallManager.

Installing the Cisco Unified TSP

Note

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6

Install the Cisco Unified TSP software either directly from the Cisco Unified CallManager CD-ROM or
from Cisco Unified CallManager Administration. For information on installing plugins from the
Cisco Unified CallManager, see the Cisco Unified CallManager Administration Guide.

If you install Cisco Unified TSP 5.0 on a system that contains Cisco Unified TSP 4.1, the installation
program deletes the TSP 4.1 version and installs TSP 5.0. If you install Cisco Unified TSP 5.0 on a
system that contains Cisco Unified TSP 3.1, Cisco Unified TSP 3.2, or Cisco Unified CallManager TSP
3.3, theinstallation program upgrades the TSPs to TSP 5.0. (For more details, see the “Managing the
Cisco Unified TSP” section.)

Theinstallation wizard varies depending on whether you have a previous version of Cisco Unified TSP
installed.

Installing multiple TSPsinstalls multiple CiscoT SPXX X .tsp and CiscoTUISPX X X.dII filesin the same
Windows system directory.

Toinstall the Cisco Unified TSP from the Cisco Unified CallManager CD-ROM, perform the following
steps:

Procedure

Insert the Cisco Unified CallManager CD-ROM.
Double-click My Computer.

Double-click the CD-ROM drive.

Double-click the Installs folder.

Double-click Cisco T SP.exe.

Follow the online instructions.

Next Steps

Install the Cisco wavedriver if you plan to usefirst-party call control. (Do thiseven if you are performing
your own mediatermination.) For more information, see the “Installing the Wave Driver” section.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter2

Cisco Unified TAPI Installation

Activating the Cisco Unified TSP

Activating the Cisco Unified TSP

Step 1
Step 2
Step 3

Step 4
Step 5

Step 6

Step 7

Step 1
Step 2
Step 3

Step 4
Step 5

Step 6

Step 7

You caninstall up to 10 TSPs on acomputer. Use the following procedure to activate each of these TSPs.
When you install a Cisco Unified TSP, you add it to the set of active TAPI service providers. The TSP
displays as CiscoTSPX XX, where X is between 001 and 010. If a TSP has been removed or if some
problem has occurred, you can manually add it to this set.

To manually add the Cisco Unified TSP to the list of telephony drivers, perform the following steps.

Procedure for Windows 2000 and Windows XP

Open the Control Panel.
Double-click Phone and Modem Options.
On the Phone and Modem Options dialog box, click the Advanced tab.

S

Note If the Cisco Unified TSPis either not there or you removed it previously and want to add it now,
you can do so from this window.

Click Add.

On the Add Provider dialog box, choose the appropriate TSP. Labels identify the TSPs in the Telephony
providers window as CiscoTSPX XX, where XXX is between 001 and 010.

Click Add.
The TSP that you chose displays in the provider list in the Phone and M odem Options window.

Configure the Cisco Unified TSP as described in “Configuring the Cisco Unified TSP” or click Closeto
complete the setup.

Procedure for Windows NT, Windows 98, and Windows 95

Open the Control Panel.
Double-click Telephony.
Click the Telephony Driver s tab.

~

Note If the Cisco Unified TSPis either not there or you removed it previously and want to add it now,
you can do so from this window.

Click Add.

On the Add Provider dialog box, choose the appropriate TSP. Labels identify the TSPs in the Telephony
providers window as CiscoTSPX XX, where XXX is between 001 and 010.

Click Add.
The Provider list in the Telephony Drivers window now includes the CiscoT SPX XX range 001 - 010.

Configure Cisco Unified TSP as described in “Configuring the Cisco Unified TSP” or click Closeto
complete the setup.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter2 Cisco Unified TAPI Installation |

|| Configuring the Cisco Unified TSP

Configuring the Cisco Unified TSP

Step 1
Step 2
Step 3
Step 4

Step 5
Step 6

Step 1
Step 2
Step 3
Step 4

Step 5
Step 6

Y ou configure the Cisco Unified TSP by setting parameters in the Cisco IP-PBX Service Provider
configuration window. Perform the following steps to configure Cisco Unified TSP.

Procedure for Windows 2000 and Windows XP

Open the Control Panel.

Double-click Phone and Modem Options.

Choose the Cisco Unified TSP that you want to configure.

Click Configure.

The system displays the Cisco |IP PBX Service Provider dialog box.

Enter the appropriate settings as described in the “ Cisco Unified TSP Configuration Settings” section.
Click OK to save changes.

~

Note Afterthe TSPisconfigured, you must restart the telephony service before an application can run
and connect with its devices.

Procedure for Windows NT, Windows 98, and Windows 95

Open the Control Panel.

Double-click Telephony.

Choose the Cisco Unified TSP that you want to configure.

Click Configure.

The system displays the Cisco IP PBX Service Provider dialog box.

Enter the appropriate settings as described in the “ Cisco Unified TSP Configuration Settings” section.
Click OK to save changes.

Y

Note After configuring the TSP, you must restart the telephony service before an application can run
and connect with its devices.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter2 Cisco Unified TAPI Installation

Cisco Unified TSP Configuration Settings

Cisco Unified TSP Configuration Settings

The following sections describe the fields in the Cisco-1P PBX Service Provider dialog box:
e Genera Tab
e User Tab
e CTI Manager Tab
e Wave Tab
e Trace Tab
e Advanced Tab
e Language Tab

General Tab

The General Tab displays TSP and TSPUI version information, asillustrated in Figure 2-1.

Figure 2-1 Cisco IP PBX Service Provider General Tab

Cisco-IP PBX Service Praovider ﬂ

General | U zer | CTI Managerl "Wave I Trace I .&dvancedl Languagel

— Werzian Information
CizcaT 5P Wersion: 4101.2]
CigcaTSP Ul Yersion: 4101.2)

—duto Update Information
[~ 2:k Betore pdate

o0

€ Aways Sukolpdate

" Autollpdale on Incompatible QBEPrtocol'ersion

Ok I Cancal Appla

QERES

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter2 Cisco Unified TAPI Installation |

|| Cisco Unified TSP Configuration Settings

Table 2-1 contains alist of the General tab fields that must be set and their descriptions.

Table 2-1 Auto Update Information Fields

Field

Description

Ask Before Update

This check box enables the user to control the auto update process.
The Default is disabled.

Never AutoUpdate

The Default value is shown in Figure 2-1. Choosing this radio
button does not perform an auto update even after detecting an
upgradeable plugin version on the Cisco Unified CallM anager.

Always AutoUpdate

Choose this radio button to allow the CiscoT SP to auto update after
detecting an upgradeable plugin version on the
Cisco Unified CallManager.

AutoUpdate on Incompatible

QBEProtocol Version

Choose this radio button to allow the CiscoT SP to auto update only
when the local TSP version isincompatible with the

Cisco Unified CallManager, and upgrading the TSP to the plugin
version is the only choice to continue.

User Tab

The User tab allows you to configure security information, as illustrated in Figure 2-2.

Figure 2-2 Cisco IP PBX Service Provider User Tab

Cisco-IP PBX Service Provider

General _JET Managerl Wavel Trace I Advancedl Language

Security

Llzer M anne:
Password:

Werify Pazsword;

jhouztan

Qk I Cancel Spply

55129

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter2

Cisco Unified TAPI Installation

Cisco Unified TSP Configuration Settings

Table 2-2 contains alist of the fields for the User tab that must be set and their descriptions.

Table 2-2 User Tab Configuration Fields
Field Description
User Name Enter the user name of the user that you want to give access to

devices. This TSP can access devices and lines that are associated
with this user. Make sure that this user is also configured in the
Cisco Unified CallManager, so TSP can connect to

Cisco Unified CallManager.

The TSP configuration registry keys store the user name and
password that you enter.

Note You can designate only one user name and password to be
active at any time for a TSP.

Password Enter the password that is associated with the user that you entered
in the User Name field. The computer encrypts the password and
stores it in the registry.

Verify Password Reenter the user password.

CTl Manager Tab

The CTIl Manager tab allows you to configure primary and secondary CTl Manager information, as
illustrated in Figure 2-3.

Figure 2-3 Cisco-IP PBX Service Provider CTI Manager Tab

Cisco-IP PBX Service Provider

Generall Uzer | Wavel Trace I Advancedl Language

—Primary CTI M anager Location

" None

" Local Host

P Address: I—
% Hast Mame: |g|ganl|08—

—Backup CT| tanager Location

 Haone

& Local Host

1P Address: I—
% Host Name: IgugantlcS—

Qk I Cancel Lpply

58126

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter2 Cisco Unified TAPI Installation |

|| Cisco Unified TSP Configuration Settings

Table 2-3 contains alist of the CTI Manager tab fields that must be set and their descriptions.

Table 2-3 CTI Manager Configuration Fields

Field Description

Primary CTI Manager Location |Use to specify the CTI Manager to which the TSP attempts to
connect first.

If the TSP is on the same computer as the primary CTIManager,
choose the Local Host radio button.

If the primary CTIManager is on adifferent computer, choosethe |P
Address radio button and enter the |P address of primary
CTIManager or choose the Host Name radio button and enter the
host name of primary CTI Manager.

Backup CTI Manager Location |Use to specify the CTI Manager to which the TSP attempts to
connect if a connection to the primary CTl Manager fails.

If the TSP is on the same computer as the backup CTIManager,
choose the Local Host radio button.

If the backup CTIManager is on adifferent computer, choosethe | P
Address radio button and enter the IP address of backup
CTIManager or choose the Host Name radio button and enter the
host name of backup CTIl Manager.

Wave Tab

The Wave tab allows you to configure settings for your wave devices, asillustrated in Figure 2-4.

Figure 2-4 Cisco IP PBX Service Provider Wave Tab

Cisco-IP PBX Service Provider 5[

Generall User | CTl Manager | Trace I Advancedl Languagel

—Automated Yoice Call
Desired number of possible &utomated Yoice lines: |5 [0- 255)
[Current number of possible open Automated Yoice lines iz 5.
[~ Erwmerate only lines which support Automated Yoice

[Currently enumerating all lines.)

— Silence Detection
[¥ &l phones and gateways perform silence suppression

1E bit linear PCK enengy level: |2DD [0 - 32767)

Qk I Cancel Lpply

58130

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter2 Cisco Unified TAPI Installation

Cisco Unified TSP Configuration Settings

Table 2-4 contains alist of the Wave tab fields that must be set and their descriptions.

Table 2-4 Wave Tab Configuration Fields
Field Description
Automated Voice Calls The number of Cisco wave devicesthat you are using determinesthe

possible number of automated voice lines. (The default is5.) You
can open as many CTI ports as the number of Cisco wave devices
that are configured. For example, if you enter “5,” you need to
create five CTI port devices in Cisco Unified CallManager. If you
change this number, you need to remove and then reinstall any
Cisco wave devices that you installed.

You can only configure a maximum of 255 wave devices for all
installed TSPs because Microsoft limitsthe number of wave devices
per wave driver to 255.

When you configure 256 or more wave devices (including Cisco or
other wave devices), Windows displays the following error when
you access the Sounds and Multimedia control panel: “An Error
occurred while Windows was working with the Control Panel file
C:A\Winnt\System32\MMSY S.CPL.” TSP can still handle the
installed Cisco wave devices as long as you have not configured
more than 255 Cisco devices.

The current number of possible automated voice lines designates
the maximum number of lines that can be simultaneously opened by
using both LINEMEDIAMODE_AUTOMATEDVOICE and
LINEMEDIAMODE_INTERACTIVEVOICE.

If you are not developing a third-party call control application,
check the Enumerate only lines that support automated voice check
box, so the Cisco Unified TSP detectsonly linesthat are associated
with a CTI port device.

Silence Detection If you use silence detection, this check box notifies the wave driver
which method to use to detect silence on lines that support
automated voice calls that are using the Cisco Wave Driver. If the
check box is checked (default), the wave driver searches for the
absence of audio-stream RTP packets. Because all devices on the
network suppress silence and stop sending packets, this method
provides a very efficient way for the wave driver to detect silence.

However, if some phones or gateways do not perform silence
suppression, the wave driver must analyze the content of the media
stream and, at some threshold, declare that silenceisin effect. This
CPU-intensive method handles media streams from any type of
device.

If some phones or gateways on your network do not perform silence
suppression, you must specify the energy level at which the wave
driver declares that silenceisin effect. This value of the 16-bit
linear PUnified CMenergy level ranges from 0 to 32767, and the
default is 200. If all phones and gateways perform silence
suppression, the system ignores this value.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter2 Cisco Unified TAPI Installation |

|| Cisco Unified TSP Configuration Settings

Trace Tab

The Trace tab allows you to configure various trace settings, as illustrated in Figure 2-5. Changes to
trace parameters take effect immediately, even if TSP isrunning.

Figure 2-5 Cisco IP PBX Service Provider Trace Tab

Cisco-IP PBX Service Provider 5[

Generall Uzer | CTI Manager | “ave | Advancedl Language

— Trace

¥ On

|1 ooao
ax linesfile
No. of files [0

Directany IC:\TB"“F'

¥ TSF Trace " Enar ' Detailed
¥ CTI Trace

I TSP Trace

Qk I Cancel | Spply |

58128

Table 2-5 contains alist of the Trace tab fields that must be set and their descriptions.

Table 2-5 Trace Tab Configuration Fields
Field Description
On This setting allows you to enable Global CiscoTSP trace.

Check the check box to enable CiscoTSP trace. When you enable
trace, you can modify other trace parametersin the dialog box. The
CiscoT SP trace depends on the values that you enter in these fields.

Uncheck the check box to disable CiscoTSP trace. When you
disable trace, you cannot choose any trace parametersin the dialog
box, and TSP ignores the values that are entered in these fields.

Max linesffile Use to specify the maximum number of lines the trace file can
contain. The default is 10,000. Once the file contains the maximum
number of lines, trace opens the next file and writes to that file.

No. of files Use to specify the maximum number of tracefiles. The defaultis 10.
File numbering occurs in arotating sequence starting at 0. The
counter restarts at O after it reaches the maximum number of files
minus one.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter2 Cisco Unified TAPI Installation

Cisco Unified TSP Configuration Settings

Table 2-5 Trace Tab Configuration Fields (continued)
Field Description
Directory Use to specify the location in which trace files for all

Cisco Unified TSPs are stored. Make sure that the specified
directory exists.

The system creates a subdirectory for each Cisco Unified TSP. For
example, the CiscoT SPO01L og directory stores Cisco Unified TSP
1log files. The system creates trace files with filename
TSP001Debug000xxx.txt for each TSP in its respective
subdirectory.

TSP Trace This setting activates internal TSP tracing. When you activate TSP
tracing, Cisco Unified TSPlogsinternal debug information that you
can use for debugging purposes. You can choose one of the
following levels:

Error—Logs only TSP errors.

Detailed—L ogs all TSP details (such as, log function callsin the
order that they are called).

The system checksthe TSP Trace check box and chooses the Error
radio button by default.

CTI Trace This setting traces messages flowing between Cisco Unified TSP
and CTI. Cisco Unified TSP communicates with the CTI Manager.
By default, the system leaves the check box unchecked.

TSPI Trace This setting traces all messages and function calls between TAPI
and Cisco Unified TSP. The system | eaves this check box
unchecked by default.

If you check the check box, TSP traces all the function calls that
TAPI makes to Cisco Unified TSP with parameters and messages
(events) from Cisco Unified TSP to TAPI.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter2 Cisco Unified TAPI Installation |

|| Cisco Unified TSP Configuration Settings

Advanced Tab

The Advanced tab allows you to configure timer settings, as illustrated in Figure 2-6.

~

Note These timer settings that are meant for advanced users only rarely change.

Figure 2-6 Cisco IP PBX Service Provider Advanced Tab

Cisco-IP PBX Service Provider

Generali User i CTl Manageri \u\-"avei Trace Advanced iLanguagei

Timer Settings

Sunchronous Meszage Timeoutzecs):
Requested Heartbeat Intervallzecs):
Connect Retry Intervallzecs):

Provider Open Completed Timeout(secs):

1117

[] oot |_ow ||

Table 2-6 contains alist of the Advanced tab fields that must be set and their descriptions.

Table 2-6 Advanced Configuration Fields
Field Description
Synchronous Message Timeout |Useto designate the time that the TSP waitsto receive aresponse to

(secs)

a synchronous message. The value displays in seconds, and the
default is 15. Range goes from 5 to 60 seconds.

Requested Heartbeat Interval
(secs)

Use to designate the interval at which the heartbeat messages are
sent from TSP to detect whether the CTI Manager connection isstill
alive. TSP sends heartbeats when no traffic exists between the TSP
and CTI Manager for 30 seconds or more. The default interval is 30
seconds. Range goes from 30 to 300 seconds.

Connect Retry Interval (secs)

Use to designate the interval between reconnection attempts after a
CTI Manager connection failure. The default is 30 seconds. Range
goes from 15 to 300 seconds.

Provider Open Completed
Timeout (secs)

Used to designate the time that Cisco Unified TSP waits for a
Provider Open Completed Event, which indicates the CTI Manager
isinitialized and ready to serve TSP requests. CT] initialization
timeisdirectly proportional to the number of devices configured in
the system. The default value is 50 seconds. Range goes from 5 to
900 seconds.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter2

Cisco Unified TAPI Installation

Language Tab

Installing the Wave Driver

The Language tab allows you to choose one of the installed languages to view the configuration settings

in that language, asillustrated in Figure 2-7.

Figure 2-7 Cisco IP PBX Service Provider Language Tab

Cisco-IP PBX Service Provider

Generall Uzer | CTl Managerl Wavel Trace I Advanced

D anizh -

Dutch

French Change Language

German
Greek
Hungarian i

QK I Cancel | Lpply

63683

Choose a language and click Change L anguage to reload the tabs with the text in that language.

Installing the Wave Driver

You can use the Cisco wave driver with Windows 2000 and Windows NT only. Windows 98 and

A

Windows 95 do not support the Cisco wave driver.

You should install Cisco wave driver if you plan to use first-party call control. (Do this even if you are

performing your own media termination.)

Caution

Step 1
Step 2
Step 3
Step 4

Because of arestriction in Windows NT, the software may overwrite or remove existing wave drivers

from the system when you install or remove the Cisco wave driver on a Windows NT system. The
proceduresin this section for installing and uninstalling the Cisco wave driver on Windows NT include
instructions on how to prevent existing wave drivers from being overwritten or removed.

To install the Cisco wave driver, perform the following steps.

Procedure for Windows XP

Open the Control Panel.
Open Add/Remove Hardware.
Click Next.

Select Yes, | have already connected the hardware.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter2 Cisco Unified TAPI Installation |

|| Installing the Wave Driver

Step5 Select Add a New Hardware Device.

Step6 Click Next.

Step7 Select Install the Har dware that | manually select from a list.
Step8 Click Next.

Step9 For the hardware type, select Sound, video and game controller.
Step10 Click Next.

Step11 Click Have Disk.

Step12 Click Browse and navigate to the Wave Drivers folder in the folder where the Cisco Unified TSP is
installed.

Step13 Choose OEM SETUP.INF and click Open.

Step14 In the Install From Disk window, click OK.

Step15 Select the Cisco Unified TAPI Wave Driver in the Select a Device Driver window and select Next.
Step16 Select Next in the Start Hardware Installation window.

Step 17 If Prompted for Digital signature Not Found, click Continue Anyway.

Step18 Theinstallation may issue the following prompt:

The file avaudio32.dll on Windows NT Setup Disk #1 is needed,
Type the path where the file is located and then click ok.

If so, navigate to the same | ocation as where you chose OEM SETUPR.INF, select avaudio32.dll, and click
OK.

Step19 Click Yes.
Step20 Click Finish.
Step21 Click Yesto restart to restart the computer .

Procedure for Windows 2000

Step1 Open the Control Panel.

Step2 Double-click Add/Remove Har dware.

Step3 Click Next.

Step4 Click Add/Troubleshoot a Device and click Next.

Step5 Click Add a New Device and click Next.

Step6 Click No, | want to select the hardware from a list.

Step7 Choose Sound, video and game controllers and click Next.
Step8 Click Have Disk.

Step9 Click Browse and change to the Wave Drivers folder in the folder where the Cisco Unified TSP is
installed.

Step10 Choose OEM SETUP.INF and click Open.
Step11 Inthe Install From Disk window, click OK.
Step12 The Cisco Unified TAPI Wave Driver displays on the screen. Click Next.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter2

Cisco Unified TAPI Installation

Step 13
Step 14

Step 15
Step 16

Step 17
Step 18
Step 19

Step 1

Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8

Step 9
Step 10

Step 11

Saving Wave Driver Information

Click Next.

The installation may issue the following prompt:
Digital Signature Not Found

Click Yes.

The installation may issue the following prompt:

The file avaudio32.dll on Windows NT Setup Disk #1 is needed,
Type the path where the file is located and then click ok.

If so, enter the same location as where you chose OEMSETUPRINF and click OK.
Click Yes.

Click Finish.

Click Yesto restart.

Procedure for Windows NT

Before you add the Cisco wave driver, you must save the wave driver information from the registry in a
separate file as described in the “ Saving Wave Driver Information” section.

Open the Control Panel.
Double-click M ultimedia.

Click Next.

Click Add.

Click Unlisted or Updated Driver.
Click OK.

Click Browse and change to the Wave Drivers folder in the folder where the Cisco Unified TSP is
installed.

Click OK. Follow the online instruction, but do not restart the system when prompted.

Examine the contents of the registry to verify the new driver was installed and the old drivers still exist,
as described in the “Verifying the Wave Driver Exists’ section.

Restart the computer.

Saving Wave Driver Information

Step 1
Step 2

Use the following steps to save wave driver information from the registry in a separate file. You must
perform this procedure when installing or uninstalling the Cisco wave driver on a Windows NT
computer.

Procedure

Click Start > Run.
In the text box, enter regedit.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter2 Cisco Unified TAPI Installation |

|| Verifying the Wave Driver Exists

Step 3
Step 4

Step 5
Step 6
Step 7

Click OK.

Choose the Drivers32 key that is located in the following path:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\ CurrentVersion
Choose Registry > Export Registry File.

Enter a filename and choose the location to save.

Click Save.

Thefile receives a .reg extension.

Verifying the Wave Driver Exists

Step 1
Step 2
Step 3
Step 4

Step 5

Step 6

Step 7

Step 8

When you install or uninstall the Cisco wave driver, you must verify whether it exists on your system.
Use these steps to verify whether the wave driver exists.

Procedure

Click Start > Run.

In the text box, enter regedit.

Click OK.

Choose the Drivers32 key located in the following path:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\ CurrentVersion

If you are installing the wave driver, make sure that the driver “avaudio32.dll” displaysin the data
column. If you are uninstalling the wave driver, make sure that the driver “avaudio32.dll does not
display in the data column. This designates the Cisco wave driver.

Verify that the previously existing wave values appear in the data column for wavel, wave2, wave3, and
so on. You can compare this registry list to the contents of the .reg file that you saved in the “ Saving
Wave Driver Information” procedure by opening the .reg file in atext editor and viewing it and the
registry window side by side.

If necessary, add the appropriate waveX string values for any missing wave values that should be
installed on the system. For each missing wave value, choose

Edit > New > String Value and enter a value name. Then, choose Edit > M odify, enter the value data,
and click OK.

Close the registry by choosing Registry > Exit.

Verifying the Cisco Unified TSP Installation

You can use the Microsoft Windows Phone Dialer Application to verify that the Cisco Unified TSP is
operational. For Windows NT and Windows 2000, locate the dialer application in
C:\Program Files\Windows NT\dialer.exe

For windows 95 and Windows 98, locate the dialer application in C:\Windows\dialer.exe

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter2 Cisco Unified TAPI Installation

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7

Step 1

Step 2
Step 3
Step 4

Setting Up Client-Server Configuration

Procedure For Windows 2000 and Windows XP

Open the Dialer application by locating it in Windows Explorer and double-clicking it.
Choose Edit > Options.

Choose Phone as the Preferred Line for Calling.

In the Line Used For area, choose one Cisco Line in the Phone Calls drop-down menu.
Click OK.

Click Dial.

Enter a number to dial, choose Phone Call in the Dial as box, and then click Place Call.

Procedure for Windows NT, Windows 98, and Windows 95

Open the Dialer application by locating it in Windows Explorer and double-clicking it:

A dialog box appears that requests the line and address that you want to use. If no lines are listed in the

Line drop-down list box, a problem may exist between the Cisco Unified TSP and the
Cisco Unified CallManager.

Choose a line from the Line drop-down menu. Make sure Addressiis set to Address 0.
Click OK.
Enter a number to dial.

If the call is successful, you have verified that the Cisco Unified TSP is operational on the machine
where the Cisco Unified TSP isinstalled.

If you encounter problems during this procedure, or if no lines appear in the line drop-down list on the

dialer application, check the following items:
e Make sure that the Cisco Unified TSP is configured properly.

e Test the network link between the Cisco Unified TSP and the Cisco Unified CallM anager by using

the ping command to check connectivity.
e Make sure that the Cisco Unified CallManager server is functioning.

Setting Up Client-Server Configuration

For information on setting up a client-server configuration (Remote TSP) in Windows 2000, refer to the
Microsoft Windows Help feature. For information on client-server configuration in Windows NT, refer

to Microsoft White Papers.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter2 Cisco Unified TAPI Installation |

|| Uninstalling the Wave Driver

Uninstalling the Wave Driver

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8

Step 9

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8
Step 9

Step 1

Step 2
Step 3
Step 4
Step 5
Step 6

To remove the Cisco wave driver, perform the following steps.

Procedure for Windows XP

Open the Control Panel.

Select Sound and Audio Devices.
Click the Har dwar e tab.

Select Cisco TAPI Wave Driver.
Click Properties.

Click the Driver tab.

Click Uninstall and OK to remove.

If the Cisco TAPI Wave Driver entry is still displayed, close and open the window again to verify that
it has been removed.

Restart the computer.

Procedure for Windows 2000

Open the Control Panel.

Double-click Add/Remove Har dware.

Click Next.

Choose Uninstall/Unplug a device and click Next.

Choose Uninstall a device and click Next.

Choose Cisco TAPI Wave Driver and click Next.

Choose Yes, | want to uninstall this device and click Next.
Click Finish.

Restart the computer.

Procedure for Windows NT

Before you uninstall the Cisco wave driver, you must save the wave driver information from the registry
in a separate file. For information on how to save the wave drive information to a separate file, see the
“Saving Wave Driver Information” section.

After the registry information is saved, open the Control Panel.
Double-click M ultimedia.

Click the Devices tab.

To view al the audio devices, click the ‘+' symbol next to Audio Devices.
Click Audio for Cisco Sound System.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter2 Cisco Unified TAPI Installation

Step 7
Step 8
Step 9

Step 10

Removing the Cisco Unified TSP

Click Remove.
Click Finish. Do not restart the system.

Verify that the Cisco wave driver was removed and the old drivers still exist. For information on how to
do this, see the “Verifying the Wave Driver Exists’ section.

S

Note When you verify the removal of the driver, make sure that Cisco wave driver “avaudio32.dll”
does not appear in the data column.

Restart the computer.

Removing the Cisco Unified TSP

Step 1
Step 2
Step 3
Step 4
Step 5

Step 1
Step 2
Step 3
Step 4
Step 5

This process removes the Cisco Unified TSP from the provider list but does not uninstall the TSP. To
make these changes, perform the following steps.

Procedure for Windows 2000

Open the Control Panel.

Double-click the Phone and M odem icon.

Click the Advanced tab.

Choose the Cisco Unified TSP that you want to remove.

To delete the Cisco Unified TSP from thelist, click Remove.

Procedure for Windows NT, Windows 98, and Windows 95

Open the Control Panel.

Double-click the Telephony icon.

Click the Advanced tab.

Choose the Cisco Unified TSP that you want to remove.

To delete the Cisco Unified TSP from thelist, click Remove.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter2 Cisco Unified TAPI Installation |

Il Managing the Cisco Unified TSP

Managing the Cisco Unified TSP

You can perform the following actions on all installed TSPs:

¢ Reinstall the existing Cisco Unified TSP version

e Upgrade to the newer version of the Cisco Unified TSP

e Uninstall the Cisco Unified TSP
You cannot change the number of installed Cisco Unified TSPs when you reinstall or upgrade the
Cisco Unified TSPs.

Related Topics
¢ Reinstalling the Cisco Unified TSP

e Upgrading the Cisco Unified TSP
e Auto Update for Cisco Unified TSP Upgrades
e Uninstalling the Cisco Unified TSP

Reinstalling the Cisco Unified TSP

Use the following procedure to reinstall the Cisco Unified TSP on all supported platforms.

Procedure

Step1 Open the Control Panel and double-click Add/Remove Programs.
Step2 Choose Cisco Unified TSP and click Add/Remove.

The Cisco Unified TSP maintenance install dialog box displays.
Step3 Click Reinstall TSP 4.1(X.X) radio button and click Next.
Step4 Follow the online instructions.

S

Note If TSP files are already locked, the installation program prompts you to restart the computer.

Upgrading the Cisco Unified TSP

Use the following procedure to upgrade the Cisco Unified TSP on all supported platforms.

Procedure

Step1 Choose the type of installation for Cisco Unified CallManager TSP 4.1(X.X).
Step2 Choose Upgrade from TSP X.X(X.X) option radio button and click Next.
Step3 Follow the online instructions.

S

Note If TSP files are already locked, the installation program prompts you to restart the computer.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter2

Cisco Unified TAPI Installation

Step 4

Managing the Cisco Unified TSP

The CiscoT SP maintenance install dialog box displays.
If CiscoT SP.exe contains different version of Cisco Unified TSP than you have installed, theinstallation
program displays one of the following prompts, depending upon the previous Cisco Unified TSP
version:
Choose the type of installation for TSP Version 4.1(X.X).
e If the previousinstalled version is Cisco Unified TSP 3.1(X.X), the following prompt displays:
Upgrade from TSP 3.1(X.X)
e If the previousinstalled version is Cisco Unified TSP 3.2(X.X), the following prompt displays:
Upgrade from TSP 3.2(X.X)
e If the previousinstalled version is Cisco Unified TSP 3.3(X.X), the following prompt displays:
Upgrade from 3.3(X.X)
e If the previousinstalled version is Cisco Unified TSP 4.1(X.X), the following prompt displays:
Upgrade from TSP 4.1(X.X)

Auto Update for Cisco Unified TSP Upgrades

CiscoT SP supports auto update functionality, so the latest plugin can be downloaded and installed on
the client machine. When the Cisco Unified CallManager is upgraded to a higher version, and CiscoTSP
auto update functionality is enabled, the latest compatible CiscoTSP is available, which is compatible
with the upgraded CallManager. Thisensuresthat the applicationswork as expected with the new rel ease
of Cisco Unified CalManager (provided the new call manager interface is backward compatible with
the TAPI interface). The CiscoTSP that isinstalled locally on the client server allows the application to
set the auto update options as part of the CiscoT SP configuration. You can opt for updating the CiscoT SP
in the following different ways.

e Update CiscoT SP whenever a different (has to be higher version that existing) version is available
on the Cisco Unified CallManager server.

e Update CiscoT SP whenever a QBE protocol version mismatch occurs between the existing
CiscoTSP and the Cisco Unified CallManager version.

¢ Do not update CiscoTSP by using the auto update functionality.

Autolnstall Behavior

As part of initialization of CiscoTSP, when the application does linel nitializeEx, CiscoTSP queries the
current TSP plugin version information that is available on Cisco Unified CallManager server. Oncethis
information is available, CiscoT SP compares the installed CiscoTSP version with the plugin version. If
user chose an option for Auto Update, CiscoTSP triggers the update process. As part of Auto Update,
CiscoTSP behaves in the following ways on different platforms.

Windows 95, Windows 98, Windows ME

Because CiscoTSP isin use and locked when the application does linelnitializeEx, the auto update
process requests that you close all the running applications to install the new TSP version on the client
setup. When all the running applications get closed, CiscoTSP auto update process can continue, and

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter2 Cisco Unified TAPI Installation |

Il Managing the Cisco Unified TSP

Windows NT

Windows 2000 or XP

Note

Note

you will be informed about the upgrade success. If the running applications do not get closed and the
installation continues, the new version of CiscoTSP will not get installed, and a corresponding error gets
reported to the applications.

After CiscoTSP detects that an upgradeable version is available on the Cisco Unified CallManager
server and Auto Update gets chosen, CiscoT SP reports O lines to the application and removes the
CiscoTSP provider from the provider list. It will then try to stop the telephony service to avoid any
locked files during Auto Update. If the telephony service can be stopped, CiscoTSP gets silently auto
updated and the service restarted. Applications must be reinitialized in order to start using the CiscoT SP.
If the telephony service could not be stopped, CiscoTSP installs the new version and displays a message
to restart the system. You must restart the system in order to use the new CiscoTSP.

After CiscoTSP detects that an upgradeable version is available on the Cisco Unified CallManager
server and Auto Update option gets chosen, CiscoT SP reports 0 lines to the application and removes the
CiscoTSP provider from the provider list. If anew TSP version is detected during the reconnect time,
the running applications receive LINE_REMOVE on all the lines, which are already initialized and are
in OutOfService state. CiscoTSP silently upgrades to the new version that was downloaded from the
Cisco Unified CallManager and puts the CiscoTSP provider back on the provider list. All the running
applications receive LINE_CREATE messages.

WinXP supports multiple user logon sessions (fast user switching); however, this release supports Auto
Update only for the first logon user. If multiple active logon sessions exist, CiscoT SP only supports the
Auto Update functionality for the first logged-on user.

If a user has multiple CiscoTSPs installed on the client machine, only the first CiscoTSP instance is
enabled to set up the Auto Update configuration. All CiscoT SPsget upgraded to a common version upon
version mismatch. From “Control Panel/Phone & Modem Options/Advanced/CiscoTSP001,” the
General window displays the options for Auto Update.

Because it isa CTI service parameter, which can be configured, you can change the Plugin location to
adifferent machine than the Cisco Unified CallManager server. The default is
“//<CM Server>//ccmpluginsserver”.

If Silent upgrade fails on any listed platforms for any reason (such as locked files that are encountered
during upgrade on Win95/98/M E), the old CiscoT SP provider(s) do not get put back on the provider list
to avoid any looping of the Auto Update process. Ensure that the update options get cleared and the
providers get added to provider list manually. Update the CiscoTSP manually or by fixing the problem(s)
encountered during Auto Update and reinitializing Cisco Unified TAPI to trigger the Auto Update
process.

TSPAutol nstall.exe has user interface screens and can proceed to display these screens only when the
telephony service enablesthe Local System logon option with “Allow Service to interact with Desktop”.
If the logon option is not set as L ocal System or logon option is L ocal System but “Allow Service to
interact with Desktop” is disabled, CiscoTSP cannot launch the Autolnstall Ul windows and will not
continue with Autolnstall.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter2

Cisco Unified TAPI Installation

Step 1
Step 2

Step 3

Managing the Cisco Unified TSP

Ensure that the following logon options are set for the telephony service.

Logon as: L ocal System.
Enable the check box: “Allow Service to interact with Desktop.”
These telephony service settings, when changed, requires manual restart of the service to take effect.

If, after changing the settings to above values, the service does not restart, CiscoTSP checks for “Allow
Service to interact with user” to be positive (as the configuration is updated for the service in the
database), but Autolnstall Ul cannot display. CiscoTSP continues to put the entry for

TSPAutol nstall.exe under Registry key RUNONCE. Thiswill help autoinstall to run when the machine
reboots the next time.

Uninstalling the Cisco Unified TSP

Step 1
Step 2

Step 3
Step 4

Use the following procedure to uninstall the Cisco Unified TSP on all supported platforms.

Procedure

Open the Control Panel and double-click Add/Remove Programs.

Choose Cisco Unified TSP and click Add/Remove.

The Cisco Unified TSP maintenance install dialog box displays.

Choose Uninstall: Removetheinstalled TSP radio button and click Next.
Follow the online instructions.

S

Note If TSP files are already locked, the installation program prompts you to restart the computer.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter2 Cisco Unified TAPI Installation |

Il Managing the Cisco Unified TSP

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
m. oL-9442-01 |

CHAPTER
Cisco Unified TAPI Implementation

The Cisco Unified TAPI implementation comprises a set of classes that expose the functionality of the
Cisco Unified Communications Solutions. This API allows developers to create customized 1P
Telephony applications for Cisco Unified CallManager without specific knowledge of the
communication protocols between the Cisco Unified CallManager and the service provider. For
example, adeveloper could create a TAPI application that communicates with an external voice

messaging system.
This chapter outlinesthe TAPI 2.1 functions, events, and messages that the Cisco Unified TAPI Service
Provider supports. The Cisco Unified TAPI implementation contains functions in the following areas:

e TAPI Line Functions

TAPI Line Messages

e TAPI Line Device Structures
e TAPI Phone Functions

¢ TAPI Phone Messages

¢ TAPI Phone Structures

e Wave

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

TAPI Line Functions

The number of TAPI devices that are configured in the Cisco Unified CallManager determines the
number of available lines. To terminate an audio stream by using first-party control, you must first install
the Cisco wave device driver.

Table 3-1 TAPI Line Functions Supported

TAPI Line Functions Supported

lineAccept
lineAddProvider
lineAddToConference
lineAnswer

lineBlindTransfer
lineCallbackFunc
lineClose

lineCompleteTransfer

lineConfigProvider
lineDeallocateCall
lineDevSpecific
lineDial

lineDrop

lineForward

lineGenerateDigits

lineGenerateTone
lineGetAddressCaps
lineGetAddressID
lineGetAddressStatus
lineGetCalllnfo
lineGetCallStatus
lineGetConfRelatedCalls
lineGetDevCaps
lineGetID
lineGetLineDevStatus

lineGetMessage
lineGetNewCalls
lineGetNumRings
lineGetProviderList
lineGetRequest

lineGetStatusM essages

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3

Cisco Unified TAPI Implementation

Table 3-1 TAPI Line Functions Supported (continued)

TAPI Line Functions Supported

lineGetTranslateCaps

lineHandoff

lineHold

linelnitialize

linelnitializeEx

lineM akeCall

lineMonitorDigits

lineMonitorTones

lineNegotiateAPIVersion

lineNegotiateExtVersion

lineOpen

linePark

linePrepareAddToConference

lineRedirect

lineRegi sterRequestReci pient

lineRemoveProvider

lineSetAppPriority

lineSetCallPrivilege

lineSetNumRings

lineSetStatusM essages

lineSetTollList

lineSetupConference

lineSetupTransfer

lineShutdown

lineTransl ateA ddress

lineTranslateDialog

lineUnhold

lineUnpark

TAPI Line Functions I

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

lineAccept

Description

The lineAccept function accepts the specified offered call.

Function Details

LONG lineAccept (
HCALL hCall,
LPCSTR lpsUserUserInfo,
DWORD dwSize

)

Parameters

hCall

A handleto the call to be accepted. The application must be an owner of the call. Call state of hCall
must be offering.

IpsUserUserinfo

A pointer to a string that contains user-user information to be sent to the remote party as part of the
call accept. Leavethispointer NULL if no user-user information isto be sent. User-user information
only gets sent if supported by the underlying network. The protocol discriminator member for the
user-user information, if required, should appear as the first byte of the buffer that is pointed to by
IpsUserUserinfo and must be accounted for in dwSize.

~

Note The Cisco Unified TSP does not support user-user information.

dwSize

The size in bytes of the user-user information in IpsUserUserInfo. If IpsUserUserinfoisNULL, no
user-user information gets sent to the calling party, and dwSize isignored.

lineAddProvider

Description

The lineAddProvider function installs a new telephony service provider into the telephony system.

Function Details

LONG WINAPI lineAddProvider (
LPCSTR lpszProviderFilename,
HWND hwndOwner,

LPDWORD lpdwPermanentProviderID

)i

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Parameters

Return Values

TAPI Line Functions I

IpszProviderFilename
A pointer to a null-terminated string that contains the path of the service provider to be added.
hwndOwner

A handle to awindow in which any dialog boxes that need to be displayed as part of the installation
process (for example, by the service provider's TSPI_providerinstall function) would be attached.
Can be NULL to indicate that any window created during the function should have no owner
window.

[pdwPermanentProvider| D

A pointer to a DWORD-sized memory location into which TAPI writes the permanent provider
identifier of the newly installed service provider.

Returns zero if request succeeds or anegative error number if an error occurs. Possible return val ues are:
e LINEERR_INIFILECORRUPT
¢ LINEERR_NOMEM
e LINEERR_INVALPARAM
e LINEERR_NOMULTIPLEINSTANCE
e LINEERR_INVALPOINTER
e LINEERR_OPERATIONFAILED

lineAddToConference

Description

Function Details

This function takes the consult call that is specified by hConsultCall and adds it to the conference call
that is specified by hConfCall.

LONG lineAddToConference (
HCALL hConfcCall,
HCALL hConsultCall

)i

Parameters
hConfCall
A pointer to the conference call handle. The state of the conference call must be
OnHoldPendingConference or OnHold.
hConsultCall
A pointer to the consult call that will be added to the conference call. The application must be the
owner of this call, and it cannot be a member of another conference call. The allowed states of the
consult call comprise connected, onHold, proceeding, or ringback
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-94a2-m .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

lineAnswer

Description

The lineAnswer function answers the specified offering call.

S
Note CallProcessing requires previous calls on the device to be in connected call state before answering
further callson the same device. If calls are answered without checking for the call state of previouscalls

on the same device, then Cisco Unified TSP might return a successful answer response but the call will
not go to connected state and needs to be answered again.

Function Details

LONG lineAnswer (
HCALL hCall,
LPCSTR lpsUserUserInfo,
DWORD dwSize

)

Parameters

hCall

A handle to the call to be answered. The application must be an owner of thiscall. The call state of
hCall must be offering or accepted.

IpsUserUserinfo

A pointer to astring that contai ns user-user information to be sent to the remote party at the time the
call is answered. You can leave this pointer NULL if no user-user information will be sent.

User-user information only gets sent if supported by the underlying network. The protocol
discriminator field for the user-user information, if required, should be the first byte of the buffer
that is pointed to by IpsUserUserIinfo and must be accounted for in dwSize.

~

Note The Cisco Unified TSP does not support user-user information.

dwSize

The size in bytes of the user-user information in IpsUserUserInfo. If IpsUserUserinfoisNULL, no
user-user information gets sent to the calling party, and dwSize isignored.

lineBlindTransfer

Description

The lineBlindTransfer function performs a blind or single-step transfer of the specified call to the
specified destination address.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Note

Function Details

TAPI Line Functions I

The lineBlindTransfer function that is implemented until Cisco Unified TSP 3.3 does not comply with
the TAPI specification. This function actually gets implemented as a consultation transfer and not a
single-step transfer. From Cisco Unified TSP 4.0, the lineBlindTransfer complies with the TAPI specs
wherein the transfer is a single-step transfer.

If the application tries to blind transfer a call to an address that requires a FAC, CMC, or both, then the
lineBlindTransfer function will return an error. If aFAC is required, the TSP will return the error
LINEERR_FACREQUIRED. If aCMC isrequired, the TSP will return the error
LINEERR_CMCREQUIRED. If both aFAC and a CMC is required, the TSP will return the error
LINEERR_FACANDCMCREQUIRED. An application that wishes to blind transfer acall to an address
that requiresa FAC, CMC, or both, should use the lineDevSpecific - BlindTransferFACCMC function.

LONG lineBlindTransfer (
HCALL hCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode

)i

Parameters
hCall
A handleto the call to be transferred. The application must be an owner of thiscall. The call state
of hCall must be connected.
IpszDestAddress
A pointer to a NULL-terminated string that identifies the location to which the call is to be
transferred. The destination address uses the standard dial number format.
dwCountryCode
The country code of the destination. The implementation uses this parameter to select the call
progress protocols for the destination address. If avalue of 0 is specified, the defined default
call-progress protocol is used.
lineCallbackFunc
Description

Function Details

The lineCallbackFunc function provides a placeholder for the application-supplied function name.

VOID FAR PASCAL lineCallbackFunc (
DWORD hDevice,
DWORD dwMsg,
DWORD dwCallbackInstance,
DWORD dwParaml,
DWORD dwParam2,
DWORD dwParam3

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

Parameters

Further Details

lineClose

Description

Function Details

Parameter

hDevice

A handleto either aline device or acall that is associated with the callback. The context provided
by dwM sg determines thee nature of this handle (line handle or call handle). Applications must use
the DWORD type for this parameter because using the HANDLE type may generate an error.

dwMsg
A line or call device message.
dwCallbacklnstance

Callback instance datathat is passed back to the application in the callback. TAPI does not interpret
DWORD.

dwParaml

A parameter for the message.
dwParam?2

A parameter for the message.
dwParam3

A parameter for the message.

For information about parameter values that are passed to this function, see “ TAPI Line Functions.”

The lineClose function closes the specified open line device.

LONG lineClose (
HLINE hLine
)i

hLine

A handleto the open line deviceto be closed. After the line has been successfully closed, thishandle
isno longer valid.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Functions I

lineCompleteTransfer

Description

Function Details

Parameters

The lineCompleteTransfer function completes the transfer of the specified call to the party that is
connected in the consultation call.

LONG lineCompleteTransfer (
HCALL hCall,
HCALL hConsultCall,
LPHCALL lphConfCall,
DWORD dwTransferMode

hCall

A handle to the call to be transferred. The application must be an owner of this call. The call state
of hCall must be onHold, onHoldPendingTransfer.

hConsultCall

A handleto the call that represents a connection with the destination of the transfer. The application
must be an owner of this call. The call state of hConsultCall must be connected, ringback, busy, or
proceeding.

IphConfCall

A pointer to amemory location where an hCall handle can be returned. If dwTransferModeis
LINETRANSFERMODE_CONFERENCE, the newly created conference call is returned in
IphConfCall and the application becomes the sole owner of the conference call. Otherwise, this
parameter gets ignored by TAPI.

dwTransferMode

Specifies how the initiated transfer request is to be resolved. This parameter uses the following
LINETRANSFERMODE _ constant:

- LINETRANSFERMODE_TRANSFER - Resolvetheinitiated transfer by transferring theinitial
call to the consultation call.

— LINETRANSFERMODE_CONFERENCE - The transfer gets resolved by establishing a
three-way conference between the application, the party connected to theinitial call, and the
party connected to the consultation call. Selecting this option creates a conference call.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

lineConfigProvider

Description

The lineConfigProvider function causes a service provider to display its configuration dialog box. This
basically provides a straight pass-through to TSPI_providerConfig.

Function Details

LONG WINAPI lineConfigProvider (
HWND hwndOwner,
DWORD dwPermanentProviderID
)i

Parameters
hwndOwner
A handle to a window to which the configuration dialog box (displayed by TSPI_providerConfig)
is attached. This parameter can be NULL to indicate that any window that is created during the
function should have no owner window.
dwPermanentProviderI| D
The permanent provider identifier of the service provider to be configured.
Return Values

Returns zero if the request succeeds or anegative error number if an error occurs. Possible return values
follow:

e LINEERR_INIFILECORRUPT

e LINEERR_NOMEM

e LINEERR_INVALPARAM

e LINEERR_OPERATIONFAILED

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Functions I

lineDeallocateCall

Description

The lineDeallocateCall function deallocates the specified call handle.

Function Details

LONG lineDeallocateCall (
HCALL hCall
)i

Parameter
hCall

The call handle to be deallocated. An application with monitoring privileges for a call can always
deallocate its handle for that call. An application with owner privilege for acall can deallocate its
handle unlessit is the sole owner of the call and the call is not in the idle state. The call handleis
no longer valid after it has been deallocated.

lineDevSpecific

Description

The lineDevSpecific function enables service providers to provide access to features that other TAPI
functions do not offer. The extensions are device specific, and taking advantage of these extensions
requires the application to be fully aware of them.

When used with the Cisco Unified TSP, lineDevSpecific can be used to
¢ Enable the message waiting lamp for a particular line.
e Handle the audio stream (instead of using the provided Cisco wave driver).
e Turn On or Off the reporting of Media Streaming messages for a particular line.
e Register aCTI port or route point for dynamic media termination.

e Set the |P address and the UDP port of acall at a CTI port or route point with dynamic media
termination.

e Redirect a Call and Reset the OriginalCalledID of the call to the party that is the destination of the
redirect.

e Redirect acall and set the OriginalCalledID of the call to any party.

e Join two or more calls into one conference call.

¢ Redirect aCall to adestination that requires a FAC, CMC, or both.

e Blind Transfer a Call to a destination that requires a FAC, CMC, or both.
e Open aCTlI Port in Third Party Mode.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

N

Note In Cisco Unified TSP Releases 4.0 and later, the TSP no longer supports the ability to perform a
SwapHold/SetupTransfer on two calls on aline in the CONNECTED and the ONHOLD call states so
that these calls can be transferred using lineCompleteTransfer. Cisco Unified TSP Releases 4.0 and later
support the ability to transfer these calls using the lineCompl eteTransfer function without having to
perform the SwapHold/SetupTransfer beforehand.

Function Details

LONG lineDevSpecific(
HLINE hLine,
DWORD dwAddresslID,
HCALL hCall,
LPVOID lpParams,
DWORD dwSize

Parameters

hLine

A handleto aline device. This parameter is required.
dwAddressID

An address identifier on the given line device.
hCall

A handleto acall. Although this parameter isoptional, it is specified, the call that it represents must
belong to the hLine line device. The call state of hCall is device specific.

IpParams

A pointer to a memory area that is used to hold a parameter block. The format of this parameter
block specifies device specific, and TAPI passes its contents to or from the service provider.

dwSize

The size in bytes of the parameter block area.

lineDial

Description

ThelineDial function dials the specified number on the specified call.

This function can be used by the application to enter a FAC or CMC. The FAC or CMC can be entered
one digit at atime or multiple digits at atime. The application may also enter both the FAC and CMC
if required in one lineDial () request as long as the FAC and CMC are separated by a “#" character. If
sending both a FAC and CMC in one lineDial() request, it is recommended to terminate the
IpszDestAddress with a“#” character in order to avoid waiting for the T.302 interdigit timeout.

This function cannot be used to enter a dial string along with a FAC and/or a CMC. The FAC and/or
CMC must be entered in a separate lineDial request.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Function Details

Parameters

lineDrop

Description

Function Details

Parameters

TAPI Line Functions I

LONG lineDial (
HCALL hCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode

)

hCall

A handleto the call on which anumber isto be dialed. The application must be an owner of the call.
The call state of hCall can be any state except idle and disconnected.

IpszDestAddress
The destination to be dialed by using the standard dial number format.
dwCountryCode

The country code of the destination. The implementation uses this code to select the call progress
protocols for the destination address. If avalue of 0 is specified, the default call progress protocol
isused.

The lineDrop function drops or disconnects the specified call. The application can specify user-user
information to be transmitted as part of the call disconnect.

LONG lineDrop (
HCALL hCall,
LPCSTR lpsUserUserInfo,
DWORD dwSize

)

hCall

A handle to the call to be dropped. The application must be an owner of the call. The call state of
hCall can be any state except idle.

IpsUserUserinfo

A pointer to a string that contains user-user information to be sent to the remote party as part of the
call disconnect. This pointer can be left NULL if no user-user information is to be sent. User-user
information only gets sent if supported by the underlying network. The protocol discriminator field
for the user-user information, if required, should appear asthe first byte of the buffer that is pointed
to by IpsUserUserinfo and must be accounted for in dwSize.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

~

Note The Cisco Unified TSP does not support user-user information.

dwSize

The size in bytes of the user-user information in IpsUserUserInfo. If IpsUserUserinfoisNULL, no
user-user information gets sent to the calling party, and dwSize isignored.

lineForward

Description

The lineForward function forwards calls that are destined for the specified address on the specified line,
according to the specified forwarding instructions. When an originating address (dwAddressID) is
forwarded, the switch deflects the specified incoming calls for that address to the other number. This
function provides a combination of forward all feature. This APl allows calls to be forwarded
unconditionally to aforwarded destination. Thisfunction can also cancel forwarding currently in effect.

To indicate that the forward is set/reset, upon completion of lineForward, TAPI fires
LINEADDRESSSTATE events that indicate the change in the line forward status.

Change forward destination with a call to lineForward without canceling the current forwarding set on
that line.

Note lineForward implementation of Cisco Unified TSP allows setting up only one type for forward as
dwForwardMode = UNCOND. The IpLineForwardList data structure accepts LINEFORWARD entry
with dwForwardMode = UNCOND.

Function Details

LONG lineForward (
HLINE hLine,
DWORD bAllAddresses,
DWORD dwAddressID,
LPLINEFORWARDLIST const lpForwardList,
DWORD dwNumRingsNoAnswer,
LPHCALL lphConsultCall,
LPLINECALLPARAMS const lpCallParams

Parameters

hLine
A handleto the line device.
bAIlAddresses

Specifies whether all originating addresses on the line or just the one that is specified are to be
forwarded. If TRUE, all addresses on the line get forwarded, and dwAddressID is ignored; if
FALSE, only the address that is specified as dwAddressID gets forwarded.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Note

Note

Note

Note

Return Values

TAPI Line Functions I

dwAddressID

The address of the specified line whose incoming calls are to be forwarded. This parameter gets
ignored if bAllAddressesis TRUE.

If bAllAddresses is FALSE, dwAddressID must be 0.

IpForwardList

A pointer to avariably sized data structure that describesthe specific forwarding instructions of type
LINEFORWARDLIST.

To cancel the forwarding that currently isin effect, ensure | pForwardList Parameter is set to NULL.

dwNumRingsNoAnswer

The number of rings before acall is considered a "no answer." If dwNumRingsNoAnswer is out of
range, the actual value gets set to the nearest value in the allowabl e range.

This parameter does not get used because this version of Cisco Unified TSP does not support call
forward no answer.

IphConsultCall

A pointer to an HCALL location. In some telephony environments, this location is loaded with a
handle to a consultation call that is used to consult the party that is being forwarded to, and the
application becomes the initial sole owner of this call. This pointer must be valid even in
environments where call forwarding does not require aconsultation call. Thishandleis setto NULL
if no consultation call is created.

This parameter also gets ignored because we do not create a consult call for setting up lineForward.

IpCallParams

A pointer to astructure of type LINECALLPARAMS. This pointer getsignored unless lineForward
requires the establishment of acall to the forwarding destination (and IphConsultCall isreturned; in
which case, IpCallParams is optional). If NULL, default call parameters get used. Otherwise, the
specified call parameters get used for establishing hConsultCall.

This parameter must be NULL for this version of Cisco Unified TSP because we do not create a consult
cal.

Returns zero if the request succeeds or anegative error number if an error occurs. Possible return values
follow:

e LINEERR_INVALLINEHANDLE
e LINEERR_NOMEM
e LINEERR_INVALADDRESSID

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

e LINEERR_OPERATIONUNAVAIL

e LINEERR_INVALADDRESS

e LINEERR_OPERATIONFAILED

e LINEERR_INVALCOUNTRY CODE
e LINEERR_RESOURCEUNAVAIL

e LINEERR_INVALPOINTER

e LINEERR_STRUCTURETOOSMALL
e LINEERR_INVALPARAM

e LINEERR_UNINITIALIZED

S
Note For IpForwardList[0].dwForwardMode other than UNCOND, lineForward returns
LINEERR_OPERATIONUNAVAIL. For |pForwardList.dwNumEntries more than 1, lineForward
returns LINEERR_INVALPARAM
lineGenerateDigits
Description
The lineGenerateDigits function initiates the generation of the specified digits on the specified call as
out-of -band tones by using the specified signaling mode.
.
Note The Cisco Unified TSP supports neither invoking this function with aNULL value for IpszDigits to

Function Details

Parameters

abort a digit generation that is currently in progress nor invoking lineGenerateDigits while digit
generation isin progress. Cisco Unified IP Phones pass DTMF digits out of band. This means that the
tone does not get injected into the audio stream (in-band) but is sent as a message in the control stream.
The phone on the far end then injects the tone into the audio stream to present it to the user. CTI port
devices do not inject DTMF tones. Also, be aware that some gateways will not inject DTMF tones into
the audio stream on the way out of the LAN.

LONG lineGenerateDigits(
HCALL hCall,
DWORD dwDigitMode,
LPCSTR lpszDigits,
DWORD dwDuration

hCall

A handleto the call. The application must be an owner of the call. Call state of hCall can be any
state.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Functions I

dwDigitMode

The format to be used for signaling these digits. The dwDigitM ode can have only a single flag set.
This parameter uses the following LINEDIGITMODE_ constant:

— LINEDIGITMODE_DTMF - Uses DTMF tones for digit signaling. Valid digits for DTMF
mode include ‘0" - ‘9", **’, ‘#'.
IpszDigits
Valid characters for DTMF mode in the Cisco Unified TSP include ‘0" through ‘9", **’, and ‘# .
dwDuration
Duration in milliseconds during which the tone should be sustained.

S

Note Cisco Unified TSP does not support dwDuration.

lineGenerateTone
Description
The lineGenerateTone function generates the specified tone over the specified call.
S
Note The Cisco Unified TSP supports neither invoking this function with a 0 value for dwToneM ode to abort

Function Details

Parameters

atone generation that is currently in progress nor invoking lineGenerateTone while tone generation is
in progress. Cisco | P phones pass tones out of band. This means that the tone does not get injected into
the audio stream (in-band) but is sent as a message in the control stream. The phone on the far end then
injects the tone into the audio stream to present it to the user. Also, be aware that some gateways will
not inject tones into the audio stream on the way out of the LAN.

LONG lineGenerateTone (
HCALL hCall,
DWORD dwToneMode,
DWORD dwDuration,
DWORD dwNumTones,
LPLINEGENERATETONE const lpTones

hCall

A handleto the call onwhich atoneisto be generated. The application must be an owner of the call.
The call state of hCall can be any state.

dwToneMode

Defines the tone to be generated. Tones can be either standard or custom. A custom tone comprises
aset of arbitrary frequencies. A small number of standard tones are predefined. The duration of the
tone gets specified with dwDuration for both standard and custom tones. The dwToneMode
parameter can have only one bit set. If no bits are set (the value 0 is passed), tone generation gets
canceled.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

This parameter uses the following LINETONEMODE_ constant:

- LINETONEMODE_BEEP - The toneis a beep, as used to announce the beginning of a
recording. The service provider defines the exact beep tone.

dwDuration
Duration in milliseconds during which the tone should be sustained.

A

Note Cisco Unified TSP does not support dwDuration.

dwNumTones
The number of entriesin the IpTones array. This parameter isignored if dwToneMode # CUSTOM.
I[pTones

A pointer to a LINEGENERATETONE array that specifies the components of the tone. This
parameter gets ignored for non-custom tones. If IpTonesis a multifrequency tone, the various tones
play simultaneously.

lineGetAddressCaps

Description

ThelineGetAddressCaps function queries the specified address on the specified line device to determine
its telephony capabilities.

Function Details

LONG lineGetAddressCaps (
HLINEAPP hLineApp,
DWORD dwDevicelD,
DWORD dwAddressID,
DWORD dwAPIVersion,
DWORD dwExtVersion,
LPLINEADDRESSCAPS lpAddressCaps

Parameters

hLineApp
The handle by which the application is registered with TAPI.
dwDevicelD

Theline device that contains the address to be queried. Only one address gets supported per line, so
dwAddressID must be zero.

dwAddressID
The address on the given line device whose capabilities are to be queried.
dwAPIVersion

The version number, obtained by lineNegotiateAPIVersion, of the API to be used. The high-order
word contains the major version number; the low-order word contains the minor version number.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Functions I

dwEXxtVersion

The version number of the extensions to be used. This number can be left zero if no device-specific
extensions are to be used. Otherwise, the high-order word contains the major version number and
the low-order word contains the minor version number.

IpAddressCaps

A pointer to avariably sized structure of type LINEADDRESSCAPS. Upon successful completion
of the request, this structure gets filled with address capabilities information. Prior to calling
lineGetAddressCaps, the application should set the dwTotal Size member of thisstructureto indicate
the amount of memory that is available to TAPI for returning information.

lineGetAddressiD

Description

Function Details

Parameters

The lineGetAddressl D function returns the address identifier that is associated with an addressin a
different format on the specified line.

LONG lineGetAddressID (
HLINE hLine,
LPDWORD lpdwAddressID,
DWORD dwAddressMode,
LPCSTR lpsAddress,
DWORD dwSize

hLine

A handle to the open line device.
IpdwAddressID

A pointer to a DWORD-sized memory location that returns the address identifier.
dwAddressMode

The address mode of the address that is contained in IpsAddress. The dwAddressMode parameter
can have only asingle flag set. This parameter uses the following LINEADDRESSMODE_
constant:

— LINEADDRESSMODE_DIALABLEADDR - The address is specified by its dialable address.
The IpsAddress parameter represents the dialable address or canonical address format.

IpsAddress

A pointer to a data structure that holds the address that is assigned to the specified line device.
dwAddressMode determines the format of the address. Because the only valid valueis
LINEADDRESSMODE_DIALABLEADDR, IpsAddress uses the common dialable number format
and is NULL-terminated.

dwSize
The size of the address that is contained in IpsAddress.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

lineGetAddressStatus

Description

The lineGetAddressStatus function allows an application to query the specified address for its current
status.

Function Details

LONG lineGetAddressStatus (
HLINE hLine,
DWORD dwAddressID,
LPLINEADDRESSSTATUS lpAddressStatus
)i

Parameters
hLine
A handle to the open line device.
dwAddressID
An address on the given open line device. Thisis the address to be queried.
IpAddressStatus
A pointer to a variably sized data structure of type LINEADDRESSSTATUS. Prior to calling
lineGetAddressStatus, the application should set the dwTotal Size member of this structure to
indicate the amount of memory that is available to TAPI for returning information.
lineGetCalllnfo
Description

ThelineGetCalllnfo function enables an application to obtain fixed information about the specified call.

Function Details

LONG lineGetCallInfo(
HCALL hCall,
LPLINECALLINFO lpCallInfo
)i

Parameters

hCall
A handleto the call to be queried. The call state of hCall can be any state.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Functions I

IpCallinfo

A pointer to avariably sized data structure of type LINECALLINFO. Upon successful completion
of the request, call-related information fills this structure. Prior to calling lineGetCallInfo, the
application should set the dwTotal Size member of this structure to indicate the amount of memory
that is available to TAPI for returning information.

lineGetCallStatus

Description

The lineGetCall Status function returns the current status of the specified call.

Function Details

LONG lineGetCallStatus (

HCALL hCall,

LPLINECALLSTATUS 1lpCallStatus
)i

Parameters

hCall
A handleto the call to be queried. The call state of hCall can be any state.
IpCall Status

A pointer to a variably sized data structure of type LINECALL STATUS. Upon successful
completion of the request, call status information fills this structure. Prior to calling
lineGetCallStatus, the application should set the dwTotal Size member of this structure to indicate
the amount of memory available to TAPI for returning information.

lineGetConfRelatedCalls

Description

The lineGetConfRelatedCalls function returns alist of call handles that are part of the same conference
call as the specified call. The specified call represents either a conference call or a participant call in a
conference call. New handles get generated for those calls for which the application does not already
have handles, and the application receives monitor privilege to those calls.

Function Details

LONG WINAPI lineGetConfRelatedCalls (
HCALL hCall,
LPLINECALLLIST lpCallList

)i

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

Parameters
hCall
A handleto acall. This represents either a conference call or a participant call in aconference call.
For a conference parent call, the call state of hCall can be any state. For a conference participant
cal, it must be in the conferenced state.
IpCallList
A pointer to a variably sized data structure of type LINECALLLIST. Upon successful completion
of therequest, call handlesto all callsin the conference call return in this structure. Thefirst call in
thelist represents the conference call, the other call s represent the participant calls. The application
receives monitor privilege to those calls for which it does not already have handles; the privileges
to callsin thelist for which the application already has handles remains unchanged. Prior to calling
lineGetConfRelatedCalls, the application should set the dwTotal Size member of this structure to
indicate the amount of memory that is available to TAPI for returning information.
Return Values
Returns zero if request succeeds or anegative error number if an error occurs. Possible return val ues are:
e LINEERR_INVALCALLHANDLE
e LINEERR_OPERATIONFAILED
e LINEERR_NOCONFERENCE
e LINEERR_RESOURCEUNAVAIL
e LINEERR_INVALPOINTER
e LINEERR_STRUCTURETOOSMALL
e LINEERR_NOMEM
e LINEERR_UNINITIALIZED
lineGetDevCaps
Description

ThelineGetDevCaps function queries a specified line device to determine its telephony capabilities. The
returned information applies for all addresses on the line device.

Function Details

LONG lineGetDevCaps (
HLINEAPP hLineApp,
DWORD dwDevicelD,
DWORD dwAPIVersion,
DWORD dwExtVersion,
LPLINEDEVCAPS lpLineDevCaps

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Parameters

lineGetlD

Description

Function Details

TAPI Line Functions I

hLineApp

The handle by which the application is registered with TAPI.
dwDevicelD

The line device to be queried.
dwAPIVersion

The version number, obtained by lineNegotiateAPIVersion, of the API to be used. The high-order
word contains the major version number; the low-order word contains the minor version number.

dwEXxtVersion

The version number, obtained by lineNegotiateExtVersion, of the extensions to be used. It can be
left zero if no device-specific extensions are to be used. Otherwise, the high-order word containsthe
major version number; the low-order word contains the minor version number.

IpLineDevCaps

A pointer to avariably sized structure of type LINEDEV CAPS. Upon successful completion of the
request, this structure gets filled with line device capabilities information. Prior to calling
lineGetDevCaps, the application should set the dwTotal Size member of this structureto indicate the
amount of memory that is available to TAPI for returning information.

The lineGetID function returns a device identifier for the specified device class that is associated with
the selected line, address, or call.

LONG lineGetID(
HLINE hLine,
DWORD dwAddresslID,
HCALL hCall,
DWORD dwSelect,
LPVARSTRING lpDevicelD,
LPCSTR lpszDeviceClass

Parameters
hLine
A handle to an open line device.
dwAddressID
An address on the given open line device.
hCall
A handleto acall.
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-94a2-m .EEI

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

dwSelect

Specifies whether the requested device identifier isassociated with the line, address or asingle call.
The dwSelect parameter can only have a single flag set. This parameter uses the following
LINECALLSELECT _ constants:

— LINECALLSELECT_LINE Selects the specified line device. The hLine parameter must be a
valid line handle; hCall and dwAddressID are ignored.

— LINECALLSELECT_ADDRESS Selects the specified address on the line. Both hLine and
dwAddressID must be valid; hCall is ignored.

— LINECALLSELECT_CALL Selects the specified call. hCall must be valid; hLine and
dwAddressID are both ignored.

IpDevicel D

A pointer to amemory location of type VARSTRING, where the device identifier is returned. Upon
successful completion of the request, the device identifier fills this location. The format of the
returned information depends on the method the device class API uses for naming devices. Prior to
calling lineGetID, the application should set the dwTotal Size member of this structure to indicate
the amount of memory that is available to TAPI for returning information.

IpszDeviceClass

A pointer to a NULL-terminated ASCII string that specifies the device class of the device whose
identifier is requested. Device classes include wave/in, wave/out and tapi/line.

Valid device class strings are those that are used in the SY STEM.INI section to identify device
classes.

lineGetLineDevStatus

Description

Function Details

Parameters

The lineGetLineDev Status function enables an application to query the specified open line device for its
current status.

LONG lineGetLineDevStatus (

HLINE hLine,

LPLINEDEVSTATUS lpLineDevStatus
)i

hLine
A handle to the open line device to be queried.
IpLineDevStatus

A pointer to avariably sized data structure of type LINEDEV STATUS. Upon successful completion
of thereguest, the device status of theline fillsthis structure. Prior to calling lineGetLineDevStatus,
the application should set the dwTotal Size member of this structure to indicate the amount of
memory that is available to TAPI for returning information.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Functions I

lineGetMessage

Description

Function Details

The lineGetM essage function returnsthe next TAPI message that i s queued for delivery to an application
that is using the Event Handle notification mechanism (see linelnitializeEx for further details).

LONG WINAPI lineGetMessage (
HLINEAPP hLineApp,
LPLINEMESSAGE lpMessage,
DWORD dwTimeout

Parameters
hLineApp
The handle returned by linel nitializeEx. The application must have set the
LINEINITIALIZEEXOPTION_USEEVENT option in the dwOptions member of the
LINEINITIALIZEEXPARAMS structure.
IpM essage
A pointer to a LINEMESSAGE structure. Upon successful return from this function, the structure
contains the next message that had been queued for delivery to the application.
dwTimeout
The time-out interval, in milliseconds. The function returns if the interval elapses, even if no
message can be returned. If dwTimeout is zero, the function checks for a queued message and
returns immediately. If dwTimeout is INFINITE, the function's time-out interval never elapses.
Return Values
Returns zero if the request succeeds or anegative error number if an error occurs. Possible return values
follow:
e LINEERR_INVALAPPHANDLE
e LINEERR_OPERATIONFAILED
e LINEERR_INVALPOINTER
¢ LINEERR_NOMEM
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

lineGetNewCalls

Description
The lineGetNewCalls function returns call handles to calls on a specified line or address for which the
application currently does not have handles. The application receives monitor privilege for these calls.

An application can use lineGetNewCallsto obtain handlesto callsfor which it currently has no handles.
The application can select the calls for which handles are to be returned by basing this selection on scope
(calls on a specified line, or calls on a specified address). For example, an application can request call
handles to all calls on a given address for which it currently has no handle.

Function Details

LONG WINAPI lineGetNewCalls(
HLINE hLine,
DWORD dwAddressID,
DWORD dwSelect,
LPLINECALLLIST lpCallList

Parameters

hLine
A handle to an open line device.
dwAddressID

An address on the given open line device. An address identifier permanently associates with an
address; the identifier remains constant across operating system upgrades.

dwSelect

The selection of calls that are requested. This parameter uses one and only one of the
LINECALLSELECT__ Constants.

IpCallList

A pointer to a variably sized data structure of type LINECALLLIST. Upon successful completion
of the request, call handles to all selected calls get returned in this structure. Prior to calling
lineGetNewCalls, the application should set the dwTotal Size member of this structure to indicate
the amount of memory that is available to TAPI for returning information.

Return Values
Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:
e LINEERR_INVALADDRESSID
¢ LINEERR_OPERATIONFAILED
e LINEERR_INVALCALLSELECT
e LINEERR_RESOURCEUNAVAIL
e LINEERR INVALLINEHANDLE

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Functions I

e LINEERR_STRUCTURETOOSMALL
e LINEERR_INVALPOINTER

e LINEERR_UNINITIALIZED

¢ LINEERR_NOMEM

lineGetNumRings

Description

The lineGetNumRings function determines the number of rings that an incoming call on the given
address should ring before the call is answered.

Function Details

LONG WINAPI lineGetNumRings (
HLINE hLine,
DWORD dwAddressID,
LPDWORD lpdwNumRings

)

Parameters

hLine
A handle to the open line device.
dwAddressID

An address on the line device. An address identifier permanently associates with an address; the
identifier remains constant across operating system upgrades.

[pdwNumRings
The number of rings that is the minimum of all current lineSetNumRings requests.

Return Values

Returns zero if request succeeds or anegative error number if an error occurs. Possible return val ues are:
e LINEERR_INVALADDRESSID
e LINEERR_OPERATIONFAILED
e LINEERR_INVALLINEHANDLE
¢ LINEERR_RESOURCEUNAVAIL
e LINEERR_INVALPOINTER
e LINEERR_UNINITIALIZED
¢ LINEERR_NOMEM

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

lineGetProviderList

Description

Function Details

Parameters

Return Values

The lineGetProviderList function returns a list of service providers that are currently installed in the
telephony system.

LONG WINAPI lineGetProviderList (
DWORD dwAPIVersion,
LPLINEPROVIDERLIST lpProviderList

)i

dwAPIVersion

The highest version of TAPI that the application supports (not necessarily the value that
lineNegotiateA Pl Version negotiates on some particular line device).

IpProviderList

A pointer to a memory location where TAPI can return a LINEPROVIDERLIST structure. Prior to
calling lineGetProviderList, the application should set the dwTotal Size member of this structure to
indicate the amount of memory that is available to TAPI for returning information.

Returns zero if request succeeds or anegative error number if an error occurs. Possible return values are:
¢ LINEERR_INCOMPATIBLEAPIVERSION
¢ LINEERR_NOMEM
e LINEERR_INIFILECORRUPT
e LINEERR_OPERATIONFAILED
e LINEERR_INVALPOINTER
e LINEERR_STRUCTURETOOSMALL

lineGetRequest

Description

Function Details

The lineGetRequest function retrieves the next by-proxy request for the specified request mode.

LONG WINAPI lineGetRequest (
HLINEAPP hLineApp,
DWORD dwRequestMode,
LPVOID lpRequestBuffer

)

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Parameters

Return Values

TAPI Line Functions I

hLineApp

The application's usage handle for the line portion of TAPI.

dwRequestM ode

Thetype of request that isto be obtained. dwRequestM ode can have only one bit set. This parameter
uses one and only one of the
LINEREQUESTMODE __ Constants.

IpRequestBuffer

A pointer to a memory buffer where the parameters of the request are to be placed. The size of the
buffer and the interpretation of the information that is placed in the buffer depends on the request
mode. The application-allocated buffer provides sufficient size to hold the request. If
dwRequestMode is LINEREQUESTMODE_MAKECALL, interpret the content of the request
buffer by using the LINEREQMAKECALL structure. If dwRequestMode is
LINEREQUESTMODE_MEDIACALL, interpret the content of the request buffer by using the
LINEREQMEDIACALL structure.

Returns zero if the request succeeds or anegative error number if an error occurs. Possible return values
follow:

LINEERR_INVALAPPHANDLE
LINEERR_NOTREGISTERED
LINEERR_INVALPOINTER
LINEERR_OPERATIONFAILED
LINEERR_INVALREQUESTMODE
LINEERR_RESOURCEUNAVAIL
LINEERR_NOMEM
LINEERR_UNINITIALIZED
LINEERR_NOREQUEST

lineGetStatusMessages

Description

Function Details

The lineGetStatusM essages function enables an application to query which notification messages the
application is set up to receive for events that relate to status changes for the specified line or any of its
addresses.

LONG WINAPI lineGetStatusMessages (

)i

HLINE hLine,
LPDWORD lpdwLineStates,
LPDWORD lpdwAddressStates

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

Parameters

hLine
Handle to the line device.
IpdwL ineStates

A bit array that identifies for which line device status changes a message is to be sent to the
application. If aflagis TRUE, that message isenabled; if FALSE, it isdisabled. This parameter uses
one or more of the LINEDEV STATE__ Constants.

[pdwA ddressStates

A bit array that identifies for which address status changes a message isto be sent to the application.
If aflag is TRUE, that message is enabled; if FALSE, disabled. This parameter uses one or more of
the LINEADDRESSSTATE__ Constants.

Return Values
Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:
e LINEERR INVALLINEHANDLE

LINEERR_OPERATIONFAILED

e LINEERR_INVALPOINTER

e LINEERR_RESOURCEUNAVAIL

e LINEERR_NOMEM

e LINEERR_UNINITIALIZED

lineGetTranslateCaps

Description

The lineGetTranslateCaps function returns address transl ation capabilities.

Function Details

LONG WINAPI lineGetTranslateCaps (
HLINEAPP hLineApp,
DWORD dwAPIVersion,
LPLINETRANSLATECAPS lpTranslateCaps
)

Parameters

hLineApp

The application handle returned by linelnitializeEx. If an application has not yet called the
linelnitializeEx function, it can set the hLineApp parameter to NULL.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Return Values

lineHandoff

Description

Function Details

Parameters

TAPI Line Functions I

dwAPIVersion

The highest version of TAPI that the application supports (not necessarily the value that
lineNegotiateA Pl Version negotiates on some particular line device).

IpTranslateCaps

A pointer to a location to which a LINETRANSLATECAPS structure is loaded. Prior to caling
lineGetTranslateCaps, the application should set the dwTotal Size member of this structure to
indicate the amount of memory that is available to TAPI for returning information.

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

e LINEERR_INCOMPATIBLEAPIVERSION
¢ LINEERR_NOMEM

e LINEERR_INIFILECORRUPT

e LINEERR_OPERATIONFAILED

e LINEERR_INVALAPPHANDLE

¢ LINEERR_RESOURCEUNAVAIL

e LINEERR_INVALPOINTER

e LINEERR_STRUCTURETOOSMALL

e LINEERR_NODRIVER.

The lineHandoff function gives ownership of the specified call to another application. The application
can be either specified directly by its file name or indirectly as the highest priority application that
handles calls of the specified media mode.

LONG WINAPI lineHandoff (
HCALL hCall,
LPCSTR lpszFileName,
DWORD dwMediaMode

)

hCall

A handle to the call to be handed off. The application must be an owner of the call. The call state of
hCall can be any state.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

IpszFileName

A pointer to anull-terminated string. If this pointer parameter isnon-NULL, it containsthefile name
of the application that isthe target of the handoff. If NULL, the handoff target represents the highest
priority application that has opened the line for owner privilege for the specified media mode. A
valid file name does not include the path of thefile.

dwMediaMode

The media mode that is used to identify the target for the indirect handoff. The dwMediaM ode
parameter indirectly identifies the target application that is to receive ownership of the call. This
parameter getsignored if IpszFileName isnot NULL. This parameter uses one and only one of the
LINEMEDIAMODE_ Constants.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return

values are:
e LINEERR_INVALCALLHANDLE
e LINEERR_OPERATIONFAILED
e LINEERR_INVALMEDIAMODE
¢ LINEERR_TARGETNOTFOUND
e LINEERR_INVALPOINTER
e LINEERR _TARGETSELF
¢ LINEERR_NOMEM
e LINEERR_UNINITIALIZED
e LINEERR_NOTOWNER

lineHold

Description

The lineHold function places the specified call on hold.

Function Details

LONG lineHold(
HCALL hCall
)i

Parameter

hCall

A handleto the call that is to be placed on hold. Ensure the application is an owner of the call and
the call state of hCall is connected.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

linelnitialize

Description

Function Details

TAPI Line Functions I

Although thelinelnitialize function is obsolete, tapi.dll and tapi32.dll continue to export it for backward
compatibility with applications that are using API versions 1.3 and 1.4.

LONG WINAPI lineInitialize(
LPHLINEAPP lphLineApp,
HINSTANCE hInstance,
LINECALLBACK lpfnCallback,
LPCSTR lpszAppName,
LPDWORD lpdwNumDevs

Parameters
IphLineApp
A pointer to a location that is filled with the application's usage handle for TAPI.
hlnstance
The instance handle of the client application or DLL.
IpfnCallback
The address of a callback function that isinvoked to determine status and events on the line device,
addresses, or calls. For more information, see lineCallbackFunc.
IpszAppName
A pointer to anull-terminated text string that contains only displayable characters. If this parameter
isnot NULL, it contains an application-supplied name for the application. The LINECALLINFO
structure provides this name to indicate, in a user-friendly way, which application originated,
originally accepted, or answered the call. Thisinformation can prove useful for call logging
purposes. If IpszAppNameis NULL, the application's file name gets used instead.
[pdwNumDevs
A pointer to a DWORD-sized location. Upon successful completion of this request, this location
gets filled with the number of line devices that is available to the application.
Return Values
Returns zero if the request succeeds or anegative error number if an error occurs. Possible return values
follow:
e LINEERR_INVALAPPNAME
e LINEERR_OPERATIONFAILED
e LINEERR_INIFILECORRUPT
¢ LINEERR_RESOURCEUNAVAIL
e LINEERR_INVALPOINTER
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .EEI

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

e LINEERR_REINIT

e LINEERR_NODRIVER

e LINEERR_NODEVICE

e LINEERR_NOMEM

e LINEERR_NOMULTIPLEINSTANCE.

linelnitializeEx

Description

Function Details

Parameters

ThelinelnitializeEx function initializes the use of TAPI by the application for the subsequent use of the
line abstraction. It registers the specified notification mechanism of the application and returns the
number of line devices that are available. A line device represents any device that provides an
implementation for the line-prefixed functions in the Telephony API.

LONG lineInitializeEx(
LPHLINEAPP lphLineApp,
HINSTANCE hInstance,
LINECALLBACK lpfnCallback,
LPCSTR lpszFriendlyAppName,
LPDWORD lpdwNumDevs,
LPDWORD lpdwAPIVersion,
LPLINEINITIALIZEEXPARAMS lpLinelInitializeExParams

IphLineApp
A pointer to a location that is filled with the TAPI usage handle for the application.
hlnstance

The instance handle of the client application or DLL. The application or DLL can pass NULL for
this parameter, in which case TAPI uses the module handle of the root executable of the process (for
purposes of identifying call hand-off targets and media mode priorities).

IpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls, when the application is using the “ hidden window” method of event natification.
This parameter getsignored and should be set to NULL when the application chooses to use the
“event handle” or “completion port” event notification mechanisms.

IpszFriendlyAppName

A pointer to aNULL-terminated ASCII string that contains only standard ASCII characters. If this
parameter is not NULL, it contains an application-supplied name for the application. The
LINECALLINFO structure provides thisnameto indicate, in auser-friendly way, which application
originated, originally accepted, or answered the call. Thisinformation can prove useful for
call-logging purposes. If |pszFriendlyAppNameis NULL, the module filename of the application
gets used instead (as returned by the Windows APl GetM odul eFileName).

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter3 Cisco Unified TAPI Implementation

lineMakeCall

Description

Function Details

TAPI Line Functions I

[pdwNumDevs

A pointer to a DWORD-sized location. Upon successful completion of this request, this location
gets filled with the number of line devices that are available to the application.

[pdwA PlVersion

A pointer to a DWORD-si zed location. The application must initialize this DWORD, before calling
this function, to the highest API version that it is designed to support (for example, the same value
that it would pass into dwAPIHighVersion parameter of lineNegotiateAPIVersion). Make sure that
artificially high values are not used; the value must be set to 0x00020000. TAPI translates any newer
messages or structures into values or formats that the application supports. Upon successful
completion of this request, thislocation isfilled with the highest API version that TAPI supports,
allowing the application to adapt to being installed on a system with an older TAPI version.

IpLinelnitializeExParams

A pointer to astructure of type LINEINITIALIZEEXPARAMS that contains additional Parameters
that are used to establish the association between the application and TAPI (specifically, the selected
event notification mechanism of the application and associated parameters).

The lineMakeCall function places a call on the specified line to the specified destination address.
Optionally, you can specify call parameters if anything but default call setup parameters are requested.

LONG lineMakeCall (
HLINE hLine,
LPHCALL 1lphCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode,
LPLINECALLPARAMS const lpCallParams

Parameters
hLine
A handle to the open line device on which a call isto be originated.
IphCall
A pointer to an HCALL handle. The handle is only valid after the application receives
LINE_REPLY message that indicates that the lineMakeCall function successfully completed. Use
this handleto identify the call when invoking other telephony operationson the call. The application
initially acts as the sole owner of this call. This handle registers as void if the function returns an
error (synchronously or asynchronously by the reply message).
IpszDestAddress
A pointer to the destination address. This parameter follows the standard dialable number format.
This pointer can be NULL for non-dialed addresses or when all dialing is performed by using
lineDial. Inthelatter case, lineM akeCall allocates an available call appearance that would typically
remain in the dial tone state until dialing begins.
[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

dwCountryCode
The country code of the called party. If avalue of 0 is specified, the implementation uses a default.
IpCallParams

The dwNoAnswerTimeout attribute of the IpCallParams field is checked and if is non-zero, used to
automatically disconnect a call if it is not answered after the specified time.

lineMonitorDigits

Description

ThelineMonitorDigits function enables and disables the unbuffered detection of digitsthat are received
on the call. Each time that a digit of the specified digit mode is detected, a message gets sent to the
application to indicate which digit has been detected.

Function Details

LONG lineMonitorDigits (
HCALL hCall,
DWORD dwDigitModes

)

Parameters
hCall
A handleto the call on which digits areto be detected. The call state of hCall can be any state except
idle or disconnected.
dwDigitModes
Thedigit mode or modesthat are to be monitored. If dwDigitModesis zero, the system cancels digit
monitoring. This parameter can have multiple flags set and uses the following LINEDIGITMODE _
constant:
LINEDIGITMODE_DTMF - Detect digits as DTMF tones. Valid digits for DTMF include ‘O’
through ‘9, “*’, and ‘#'.
lineMonitorTones
Description

The lineMonitorTones function enables and disables the detection of inband tones on the call. Each time
that a specified tone is detected, a message gets sent to the application.

Function Details

LONG lineMonitorTones (
HCALL hCall,
LPLINEMONITORTONE const lpTonelist,
DWORD dwNumEntries

)i

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Parameters

TAPI Line Functions I

hCall

A handleto the call on which tones are to be detected. The call state of hCall can be any state except
idle.

IpToneList

A list of tones to be monitored, of type LINEMONITORTONE. Each tone in thislist has an
application-defined tag field that is used to identify individual tones in the list to report a tone
detection. Calling this operation with either NULL for IpToneList or with another tone list cancels
or changes tone monitoring in progress.

dwNumEntries
The number of entriesin IpToneList. This parameter getsignored if IpToneListis NULL.

lineNegotiateAPIVersion

Description

Function Details

The lineNegotiateA Pl Version function allows an application to negotiate an API version to use. The
Cisco Unified TSP supports TAPI 2.0 and 2.1.

LONG lineNegotiateAPIVersion (
HLINEAPP hLineApp,
DWORD dwDevicelD,
DWORD dwAPILowVersion,
DWORD dwAPIHighVersion,
LPDWORD lpdwAPIVersion,
LPLINEEXTENSIONID lpExtensionID

Parameters
hLineApp
The handle by which the application is registered with TAPI.
dwDevicelD
The line device to be queried.
dwAPILowVersion
Theleast recent API version with which the application is compliant. The high-order word specifies
the major version number; the low-order word specifies the minor version number.
dwAPIHighVersion
The most recent API version with which the application is compliant. The high-order word specifies
the major version number; the low-order word specifies the minor version number.
[pdwA PlVersion
A pointer to a DWORD-sized location that contains the API version number that was negotiated. |f
negotiation succeeds, this number fallsin the range between dwAPILowVersion and
dwAPIHighVersion.
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

IpExtensionl D

A pointer to a structure of type LINEEXTENSIONID. If the service provider for the specified
dwDevicel D supports provider-specific extensions, upon a successful negotiation, this structure
gets filled with the extension identifier of these extensions. This structure contains all zeros if the
line provides no extensions. An application can ignore the returned parameter if it does not use
extensions.

The Cisco Unified TSP extensionl D specifies 0xSEBD6A50, 0x138011d2, 0x905B0060,
0xB03DD275.

lineNegotiateExtVersion

Description

Function Details

Parameters

The lineNegotiateExtVersion function allows an application to negotiate an extension version to use
with the specified line device. Do not call this operation if the application does not support extensions.

LONG lineNegotiateExtVersion (
HLINEAPP hLineApp,
DWORD dwDevicelD,
DWORD dwAPIVersion,
DWORD dwExtLowVersion,
DWORD dwExtHighVersion,
LPDWORD lpdwExtVersion

hLineApp

The handle by which the application is registered with TAPI.
dwDevicelD

The line device to be queried.
dwAPIVersion

The API version number that was negotiated for the specified line device by using
lineNegotiateA Pl Version.

dwExtLowVersion

The least recent extension version of the extension identifier returned by lineNegotiateAPIVersion
with which the application is compliant. The high-order word specifies the major version number;
the low-order word specifies the minor version number.

dwExtHighVersion

The most recent extension version of the extension identifier returned by lineNegotiateAPIVersion
with which the application is compliant. The high-order word specifies the major version number;
the low-order word specifies the minor version number.

IpdwEXxtVersion

A pointer to a DWORD-sized location that contains the extension version number that was
negotiated. If negotiation succeeds, this number falls between dwExtLowVersion and
dwExtHighVersion.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter3 Cisco Unified TAPI Implementation

lineOpen

Description

Function Details

TAPI Line Functions I

The lineOpen function opens the line device that its device identifier specifies and returns aline handle
for the corresponding opened line device. Subsequent operations on the line device use this line handle.

LONG lineOpen (
HLINEAPP hLineApp,
DWORD dwDevicelD,
LPHLINE lphLine,
DWORD dwAPIVersion,
DWORD dwExtVersion,
DWORD dwCallbackInstance,
DWORD dwPrivileges,
DWORD dwMediaModes,
LPLINECALLPARAMS const lpCallParams

Parameters

hLineApp
The handle by which the application is registered with TAPI.

dwDevicelD
Identifies the line device to be opened. It either can be avalid device identifier or the value
LINEMAPPER
S
Note The Cisco Unified TSP does not support LINEMAPPER at this time.

IphLine
A pointer to an HLINE handle that is then loaded with the handle representing the opened line
device. Use this handl e to identify the device when you are invoking other functions on the open
line device.

dwAPIVersion
The API version number under which the application and Telephony API operate. Obtain this
number with lineNegotiateA Pl Version.

dwExtVersion
The extension version number under which the application and the service provider operate. This
number remains zero if the application does not use any extensions. Obtain this number with
lineNegotiateExtVersion.

dwCallbacklnstance
User-instance data that is passed back to the application with each message that is associated with
thisline or with addresses or calls on this line. The Telephony API does not interpret this parameter.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .EEI

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

dwPrivileges

The privilege that the application wants for the calls for which it is notified. This parameter can be
a combination of the LINECALLPRIVILEGE_ constants. For applications that are using TAPI
version 2.0 or later, values for this parameter can also be combined with the LINEOPENOPTION _
constants:

LINECALLPRIVILEGE_NONE - The application can make only outgoing calls.

LINECALLPRIVILEGE_MONITOR - The application can monitor only incoming and
outgoing calls.

LINECALLPRIVILEGE_OWNER - The application can own only incoming calls of the types
that are specified in dwMediaM odes.

LINECALLPRIVILEGE _MONITOR + LINECALLPRIVILEGE_OWNER - The application
can own only incoming calls of the types that are specified in dwMediaModes, but if it is not
an owner of acall, it isamonitor.

Other flag combinations return the LINEERR_INVALPRIVSELECT error.

dwM ediaM odes

The media mode or modes of interest to the application. Use this parameter to register the
application as a potential target for incoming call and call hand-off for the specified media mode.
This parameter proves meaningful only if the bit LINECALLPRIVILEGE_OWNER in
dwPrivilegesis set (and ignored if it is not).

This parameter uses the following LINEMEDIAMODE_ constant:

LINEMEDIAMODE_INTERACTIVEVOICE - The application can handle calls of the
interactive voice mediatype; that is, it manages voice calls with the user on this end of the call.
Use this parameter for third-party call control of physical phones and CTI port and CTI route
point devices that other applications opened.

LINEMEDIAMODE_AUTOMATEDVOICE - Voice energy exists on the call. An automated
application locally handles the voice. This represents first-party call control and is used with
CTI port and CTI route point devices.

IpCallParams

The dwNoAnswerTimeout attribute of the IpCallParams field is checked and if is non-zero, used to
automatically disconnect a call if it is not answered after the specified time.

linePark

Description

The linePark function parks the specified call according to the specified park mode.

Function Details

LONG WINAPI linePark(
HCALL hCall,
DWORD dwParkMode,
LPCSTR lpszDirAddress,
LPVARSTRING lpNonDirAddress

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Parameters

TAPI Line Functions I

hCall

Handle to the call to be parked. The application must act as an owner of the call. The call state of
hcall must be connected.

dwParkM ode

Park mode with which the call isto be parked. This parameter can have only asingle flag set and
uses one of the LINEPARKMODE_Constants.

~

Note LINEPARKMODE_Constants must be set to LINEPARKMODE_NONDIRECTED.

IpszDirAddress

Pointer to a null-terminated string that indicates the address where the call isto be parked when
directed park is used. The address specifiesin dialable number format. This parameter getsignored
for nondirected park.

~

Note This parameter gets ignored.

I[pNonDirAddress

Pointer to a structure of type VARSTRING. For nondirected park, the address where the call is
parked gets returned in this structure. This parameter gets ignored for directed park. Within the
VARSTRING structure, dwStringFormat must be set to STRINGFORMAT_ASCI| (an ASCI| string
buffer that contains a null-terminated string), and the terminating NULL must be accounted for in
the dwsStringSize. Before calling linePark, the application must set the dwTotal Size member of this
structure to indicate the amount of memory that is available to TAPI for returning information.

linePrepareAddToConference

Description

The linePrepareAddToConference function prepares an existing conference call for the addition of
another party.

If LINEERR_INVALLINESTATE isreturned, that meansthat thelineiscurrently notinastatein which
this operation can be performed. The dwLineFeatures member includes alist of currently valid
operations (of the type LINEFEATURE) in the LINEDEV STATUS structure. (Calling
lineGetLineDevStatus updates the information in LINEDEV STATUS.)

Obtain aconference call handle with lineSetupConference or with lineCompleteTransfer that is resolved
as a three-way conference call. The linePrepareAddToConference function typically places the existing
conference call in the onHoldPendingConference state and creates a consultation call that can be added
later to the existing conference call with lineAddToConference.

You can cancel the consultation call by using lineDrop. You may also be able to swap an application
between the consultation call and the held conference call with lineSwapHold.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

Function Details

Parameters

Return Values

LONG WINAPI linePrepareAddToConference (
HCALL hConfCall,
LPHCALL lphConsultCall,
LPLINECALLPARAMS const lpCallParams
)

hConfCall

A handle to a conference call. The application must act as an owner of this call. The call state of
hConfCall must be connected.

IphConsultCall

A pointer to an HCALL handle. Thislocation then gets loaded with a handle that identifies the
consultation call to be added. Initially, the application serves as the sole owner of this call.

IpCallParams

A pointer to call parameters that gets used when the consultation call is established. This parameter
can be set to NULL if no special call setup parameters are desired.

Returns a positive request identifier if the function is completed asynchronously, or a negative error
number if an error occurs. The dwParam?2 parameter of the corresponding LINE_REPLY message
specifies zero if the function succeeds or it is a negative error number if an error occurs.

Possible return values fol low:

e LINEERR_BEARERMODEUNAVAIL
e LINEERR_INVALPOINTER

e LINEERR_CALLUNAVAIL

e LINEERR_ INVALRATE

e LINEERR_CONFERENCEFULL

e LINEERR_NOMEM

e LINEERR_INUSE

e LINEERR_NOTOWNER

e LINEERR_INVALADDRESSMODE
e LINEERR_OPERATIONUNAVAIL

e LINEERR_INVALBEARERMODE

¢ LINEERR_OPERATIONFAILED

e LINEERR_INVALCALLPARAMS

e LINEERR_RATEUNAVAIL

e LINEERR_INVALCALLSTATE

e LINEERR_RESOURCEUNAVAIL

e LINEERR_INVALCONFCALLHANDLE

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

lineRedirect

Description

~

Note

Function Details

TAPI Line Functions I

e LINEERR_STRUCTURETOOSMALL
e LINEERR_INVALLINESTATE

e LINEERR_USERUSERINFOTOOBIG
e LINEERR_INVALMEDIAMODE

e LINEERR_UNINITIALIZED

The lineRedirect function redirects the specified offered or accepted call to the specified destination
address.

If the application tries to redirect a call to an address that requires a FAC, CMC, or both, then the
lineRedirect function will return an error. If aFAC is required, the TSP will return the error
LINEERR_FACREQUIRED. If aCMC isrequired, the TSP will return the error
LINEERR_CMCREQUIRED. If both a FAC and a CMC is required, the TSP will return the error
LINEERR_FACANDCMCREQUIRED. An application that wishes to redirect a call to an address that
requires aFAC, CMC, or both, should use the lineDevSpecific - RedirectFACCMC function.

LONG lineRedirect (
HCALL hCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode

)i

Parameters
hCall
A handle to the call to be redirected. The application must act as an owner of the call. The call state
of hCall must be offering, accepted, or connected.
.
Note The Cisco Unified TSP supports redirecting of calls in the connected call state.
IpszDestAddress
A pointer to the destination address. This follows the standard dialable number format.
dwCountryCode
The country code of the party to which the call is redirected. If avalue of 0 is specified, the
implementation uses a default.
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-94a2-m .Eﬂl

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

lineRegisterRequestRecipient

Description

The lineRegisterRequestRecipient function registers the invoking application as a recipient of requests
for the specified request mode.

Function Details

LONG WINAPI lineRegisterRequestRecipient (
HLINEAPP hLineApp,
DWORD dwRegistrationInstance,
DWORD dwRequestMode,
DWORD bEnable
)

Parameters

hLineApp
The application's usage handle for the line portion of TAPI.
dwRegistrationl nstance

An application-specific DWORD that is passed back as a parameter of the LINE_REQUEST
message. This message notifies the application that a request is pending. This parameter gets
ignored if bEnable is set to zero. TAPI examines this parameter only for registration, not for
deregistration. The dwRegi strati onl nstance value that is used while deregi stering need not match the
dwRegi strationl nstance used while registering for a request mode.

dwRequestM ode

The type or types of request for which the application registers. This parameter uses one or more
LINEREQUESTMODE __ Constants.

bEnable

If TRUE, the application registers the specified request modes; if FALSE, the application
deregisters for the specified request modes.

Return Values
Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:
e LINEERR_INVALAPPHANDLE
¢ LINEERR_OPERATIONFAILED
e LINEERR_INVALREQUESTMODE
e LINEERR_RESOURCEUNAVAIL
e LINEERR_NOMEM
e LINEERR_UNINITIALIZED

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Functions I

lineRemoveProvider

Description

The lineRemoveProvider function removes an existing telephony service provider from the system.

Function Details

LONG WINAPI lineRemoveProvider (
DWORD dwPermanentProviderID,
HWND hwndOwner

Parameters

dwPermanentProviderI| D
The permanent provider identifier of the service provider that isto be removed.
hwndOwner

A handle to awindow to which any dialog boxes that need to be displayed as part of the removal
process (for example, a confirmation dialog box by the service provider's TSPI_providerRemove
function) would be attached. The parameter can be a NULL value to indicate that any window that
is created during the function should have no owner window.

Return Values
Returns zero if the request succeeds or anegative error number if an error occurs. Possible return values
follow:
e LINEERR_INIFILECORRUPT
¢ LINEERR_NOMEM
e LINEERR_INVALPARAM
e LINEERR_OPERATIONFAILED

lineSetAppPriority

Description

The lineSetAppPriority function allows an application to set its priority in the handoff priority list for a
particular mediatype or Assisted Telephony request mode or to remove itself from the priority list.

Function Details

LONG WINAPI lineSetAppPriority(
LPCSTR lpszAppFilename,
DWORD dwMediaMode,
LPLINEEXTENSIONID lpExtensionID,
DWORD dwRequestMode,
LPCSTR lpszExtensionName,
DWORD dwPriority

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

Parameters

Return Values

IpszAppFilename

A pointer to a string that contains the application executable modul e filename (without directory
information). In TAPI version 2.0 or later, the parameter can specify afilenamein either long or 8.3
filename format.

dwMediaMode

The mediatype for which the priority of the application is to be set. The value can be one
LINEMEDIAMODE_ Constant; only a single bit may be on. Use the value zero to set the
application priority for Assisted Telephony requests.

IpExtensionl D
A pointer to a structure of type LINEEXTENSIONID. This parameter gets ignored.
dwRequestM ode

If the dwMediaM ode parameter is zero, this parameter specifies the Assisted Telephony request
mode for which priority isto be set. It must be either LINEREQUESTMODE_MAKECALL or
LINEREQUESTMODE_MEDIACALL. This parameter getsignored if dwMediaM ode is nonzero.

IpszExtensionName
This parameter gets ignored.
dwPriority

The new priority for the application. If the value O is passed, the application gets removed from the
priority list for the specified media or request mode (if it was aready not present, no error gets
generated). If the value 1 is passed, the application gets inserted as the highest priority application
for the media or request mode (and removed from alower-priority position, if it was already in the
list). Any other value generates an error.

Returns zero if the request succeeds or anegative error number if an error occurs. Possible return values
follow:

e LINEERR_INIFILECORRUPT

e LINEERR_INVALREQUESTMODE
e LINEERR_INVALAPPNAME

e LINEERR_NOMEM

e LINEERR_INVALMEDIAMODE

e LINEERR_OPERATIONFAILED

e LINEERR_INVALPARAM

¢ LINEERR_RESOURCEUNAVAIL

e LINEERR_INVALPOINTER

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Functions I

lineSetCallPrivilege

Description

Function Details

The lineSetCall Privilege function sets the application's privilege to the specified privilege.

LONG WINAPI lineSetCallPrivilege (
HCALL hCall,
DWORD dwCallPrivilege

)

Parameters
hCall
A handle to the call whose privilege isto be set. The call state of hCall can be any state.
dwCallPrivilege
The privilege that the application can have for the specified call. This parameter uses one and only
one LINECALLPRIVILEGE_ Constant.
Return Values
Returns zero if the request succeeds or anegative error number if an error occurs. Possible return values
follow:
e LINEERR_INVALCALLHANDLE
e LINEERR_OPERATIONFAILED
e LINEERR_INVALCALLSTATE
¢ LINEERR_RESOURCEUNAVAIL
e LINEERR_INVALCALLPRIVILEGE
e LINEERR_UNINITIALIZED
e LINEERR_NOMEM
lineSetNumRings
Description
The lineSetNumRings function sets the number of rings that must occur before an incoming call is
answered. Use this function to implement a toll-saver-style function. It allows multiple, independent
applications to each register the number of rings. The function lineGetNumRings returns the minimum
number of rings that are requested. The application that answers incoming calls can use it to determine
the number of rings that it should wait before answering the call.
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

Function Details

LONG WINAPI lineSetNumRings (
HLINE hLine,
DWORD dwAddresslID,
DWORD dwNumRings

)i

Parameters

hLine
A handle to the open line device.
dwAddressID

An address on the line device. An address identifier permanently associates with an address; the
identifier remains constant across operating system upgrades.

dwNumRings

The number of rings before a call should be answered to honor the toll-saver requests from all
applications.

Return Values
Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:
e LINEERR INVALLINEHANDLE
e LINEERR_OPERATIONFAILED
e LINEERR_INVALADDRESSID
¢ LINEERR_RESOURCEUNAVAIL
e LINEERR_NOMEM
e LINEERR_UNINITIALIZED

lineSetStatusMessages

Description

The lineSetStatusM essages function enables an application to specify which notification messages to
receive for events that are related to status changes for the specified line or any of its addresses.

Function Details

LONG lineSetStatusMessages (
HLINE hLine,
DWORD dwLineStates,
DWORD dwAddressStates

)i

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Parameters

hLine

TAPI Line Functions I

A handleto the line device.
dwL ineStates

A bit array that identifies for which line-device status changes a message is to be sent to the
application. This parameter uses the following LINEDEV STATE_ constants:

LINEDEV STATE_OTHER - Device-status items other than those listed below changed. The
application should check the current device status to determine which items changed.

LINEDEVSTATE_RINGING - The switch tells the line to alert the user. Service providers
notify applications on each ring cycle by sending LINE_LINEDEV STATE messages that
contain this constant. For example, in the United States, service providers send a message with
this constant every 6 seconds.

LINEDEVSTATE_NUMCALLS - The number of calls on the line device changed.

LINEDEVSTATE_REINIT - Items changed in the configuration of line devices. To become
aware of these changes (as with the appearance of new line devices) the application should
reinitialize its use of TAPI. New linelnitialize, linelnitializeEx, and lineOpen requests get
denied until applications have shut down their usage of TAPI. The hDevice parameter of the
LINE_LINEDEV STATE message remains NULL for this state change as it applies to any of
the lines in the system. Because of the critical nature of LINEDEV STATE_REINIT, such
messages cannot be masked, so the setting of this bit isignored, and the messages always get
delivered to the application.

LINEDEVSTATE_REMOVED - Indicates that the service provider is removing the device
from the system (most likely through user action, through a control panel or similar utility).
Normally, a LINE_CLOSE message on the device immediately follows

LINE_LINEDEV STATE message with this value. Subsequent attempts to access the device
prior to TAPI being reinitialized result in LINEERR_NODEVICE being returned to the
application. If a service provider sends a LINE_LINEDEV STATE message that contains this
value to TAPI, TAPI passes it along to applications that have negotiated TAPI version 1.4 or
later; applications negotiating a previous TAPI version do not receive any notification.

dwA ddressStates

A bit array that identifiesfor which address status changes a message isto be sent to the application.
This parameter uses the following LINEADDRESSSTATE_ constant:

LINEADDRESSSTATE_NUMCALLS - The number of calls on the address changed. This
change results from events such as a new incoming call, an outgoing call on the address, or a
call changing its hold status.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

lineSetTollList

Description

Function Details

Parameters

Return Values

The lineSetTollList function manipulates the toll list.

LONG WINAPI lineSetTollList(
HLINEAPP hLineApp,
DWORD dwDevicelD,
LPCSTR lpszAddressIn,
DWORD dwTollListOption

hLineApp

The application handle that linelnitializeEx returns. If an application has not yet called the
linelnitializeEx function, it can set the hLineApp parameter to NULL.

dwDevicelD

The device identifier for the line device upon which the call is intended to be dialed, so variations
in dialing procedures on different lines can be applied to the translation process.

IpszAddressin

A pointer to a null-terminated string that contains the address from which the prefix information is
to be extracted for processing. This parameter must not be NULL, and it must be in the canonical
address format.

dwTollListOption

Thetoll list operation to be performed. This parameter uses one and only one of the
LINETOLLLISTOPTION__ Constants.

Returns zero if the request succeeds or anegative error number if an error occurs. Possible return values
follow:

e LINEERR_BADDEVICEID

e LINEERR_NODRIVER

e LINEERR_INVALAPPHANDLE
e LINEERR_NOMEM

e LINEERR_INVALADDRESS

e LINEERR_OPERATIONFAILED
e LINEERR_INVALPARAM

¢ LINEERR_RESOURCEUNAVAIL
e LINEERR_INIFILECORRUPT

e LINEERR_UNINITIALIZED

e LINEERR_INVALLOCATION

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Functions I

lineSetupConference

Description

Function Details

The lineSetupConference function initiates a conference given an existing two-party call that the hCall
parameter specifies. A conference call and consult call are established and the handles return to the
application. Use the consult call to dial the third party and the conference call replaces the initial
two-party call. The application can also specify the destination address of the consult call that will allow
the PBX to dial the call for the application.

LONG lineSetupConference (

HCALL hCall,

HLINE hLine,

LPHCALL lphConfCall,

LPHCALL lphConsultCall,

DWORD dwNumParties,
LPLINECALLPARAMS const lpCallParams
)

Parameters

hCall
The handle of the existing two-party call. The application must be the owner of the call.

hLine
The line on which the initial two-party call was made. This parameter does not get used because
hCall must be set.

IphConfCall
A pointer to the conference call handle. The service provider allocates this call and returns the
handle to the application.

IphConsultCall
A pointer to the consult call. If the application does not specify the destination address in the call
parameters, it should use this call handle to dial the consult call. If the destination addressis
specified, the consult call will be made using this handle.

dwNumParties
The number of partiesin the conference call. Currently the Cisco Unified TAPI Service Provider
supports a three-party conference call.

IpCallParams
The call parameters that are used to set up the consult call. The application can specify the
destination address if it wants the consult call to be dialed for it in the conference setup.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-94a2-m .EEI

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

lineSetupTransfer

Description

Function Details

Parameters

lineShutdown

Description

Function Details

The lineSetupTransfer function initiates a transfer of the call that the hCall parameter specifies. It
establishes a consultation call, IphConsultCall, on which the party can be dialed that can become the
destination of the transfer. The application acquires owner privilege to the IphConsultCall parameter.

LONG lineSetupTransfer (
HCALL hCall,
LPHCALL lphConsultCall,
LPLINECALLPARAMS const lpCallParams
)

hCall

The handle of the call to be transferred. The application must be an owner of the call. The call state
of hCall must be connected.

IphConsultCall

A pointer to an hCall handle. Thislocation isthen loaded with a handle that identifies the temporary
consultation call. When setting up acall for transfer, aconsultation call automatically gets allocated
that enables lineDial to dial the address that is associated with the new transfer destination of the
call. Theoriginating party can carry on aconversation over this consultation call prior to completing
the transfer. The call state of hConsultCall does not apply.

This transfer procedure may not be valid for some line devices. The application may need to ignore
the new consultation call and remove the hold on an existing held call (using lineUnhold) to identify
the destination of the transfer. On switches that support cross-address call transfer, the consultation
call can exist on a different address than the call to be transferred. It may al so be necessary that the
consultation call be set up asan entirely new call, by lineMakeCall, to the destination of the transfer.
The address capabilities of the call specifies which forms of transfer are available.

IpCallParams

The dwNoAnswerTimeout attribute of the IpCallParamsfield is checked and, if is non-zero, used to
automatically disconnect a call if it is not answered after the specified time.

The lineShutdown function shuts down the usage of the line abstraction of the API.

LONG lineShutdown (
HLINEAPP hLineApp
)i

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Parameters

TAPI Line Functions I

hLineApp
The usage handle of the application for the line API.

lineTranslateAddress

Description

Function Details

Parameters

The lineTranslateAddress function transl ates the specified address into another format.

LONG WINAPI lineTranslateAddress (
HLINEAPP hLineApp,
DWORD dwDevicelD,
DWORD dwAPIVersion,
LPCSTR lpszAddressIn,
DWORD dwCard,
DWORD dwTranslateOptions,
LPLINETRANSLATEOUTPUT lpTranslateOutput

hLineApp

The application handle that linelnitializeEx returns. If a TAPI 2.0 application has not yet called the
linelnitializeEx function, it can set the hLineApp parameter to NULL. TAPI 1.4 applications must
still call linelnitialize first.

dwDevicelD

The device identifier for the line device upon which the call is intended to be dialed, so variations
in dialing procedures on different lines can be applied to the translation process.

dwAPIVersion

Indicates the highest version of TAPI that the application supports (not necessarily the value
negotiated by lineNegotiateAPIVersion on some particular line device).

IpszAddressin

Pointer to a null-terminated string that contains the address from which the information is to be
extracted for translation. This parameter must be in either the canonical address format or an
arbitrary string of dialable digits (non-canonical). This parameter must not be NULL. If the
Addressln contains a subaddress or name field, or additional addresses separated from the first
address by CR and LF characters, only the first address gets translated.

dwCard

The credit card to be used for dialing. This parameter proves valid only if the CARDOVERRIDE
bit is set in dwTranslateOptions. This parameter specifies the permanent identifier of a Card entry
in the [Cards] section in the registry (as obtained from lineTranslateCaps) that should be used
instead of the PreferredCard| D that is specified in the definition of the CurrentLocation. It does not
cause the PreferredCardI D parameter of the current Location entry in the registry to be modified;
the override applies only to the current translation operation. This parameter gets ignored if the
CARDOVERRIDE hit is not set in dwTranslateOptions.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

dwTranslateOptions

The associated operations to be performed prior to the translation of the address into a dialable
string. This parameter uses one of the LINETRANSLATEOPTION_ Constants.

S
Note If you have set the LINETRANSLATEOPTION_CANCELCALLWAITING bit, also set the
LINECALLPARAMFLAGS_SECURE bit in the dwCall ParamFlags member of the

LINECALLPARAMS structure (passed in to lineMakeCall through the IpCall Params
parameter). This action prevents the line device from using dialable digits to suppress call
interrupts.

IpTranslateOutput

A pointer to an application-allocated memory areato contain the output of the translation operation,
of type LINETRANSLATEOUTPUT. Prior to calling lineTranslateAddress, the application should
set the dwTotal Size member of this structure to indicate the amount of memory that is available to
TAPI for returning information.

Return Values
Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:
e LINEERR_BADDEVICEID
LINEERR _INVALPOINTER
e LINEERR_INCOMPATIBLEAPIVERSION
e LINEERR_NODRIVER
e LINEERR_INIFILECORRUPT
e LINEERR_NOMEM
e LINEERR_INVALADDRESS
¢ LINEERR_OPERATIONFAILED
e LINEERR_INVALAPPHANDLE
¢ LINEERR_RESOURCEUNAVAIL
e LINEERR_INVALCARD
e LINEERR_STRUCTURETOOSMALL
e LINEERR _INVALPARAM

lineTranslateDialog

Description

The lineTranslateDialog function displays an application-modal dialog box that allows the user to
change the current location of a phone number that is about to be dialed, adjust location and calling card
parameters, and see the effect.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Function Details

LONG WINAPI lineTranslateDialog(

HLINEAPP hLineApp,
DWORD dwDevicelD,
DWORD dwAPIVersion,
HWND hwndOwner,
LPCSTR lpszAddressIn

TAPI Line Functions I

Parameters
hLineApp
The application handle that linelnitializeEx returns. If an application has not yet called the
linelnitializeEx function, it can set the hLineApp parameter to NULL.
dwDevicelD
The device identifier for the line device upon which the call is intended to be dialed, so variations
in dialing procedures on different lines can be applied to the translation process.
dwAPIVersion
Indicates the highest version of TAPI that the application supports (not necessarily the value that is
negotiated by lineNegotiateAPIVersion on the line device that is indicated by dwDevicel D).
hwndOwner
A handle to awindow to which the dialog box is to be attached. Can be a NULL value to indicate
that any window that is created during the function should have no owner window.
IpszAddressin
A pointer to anull-terminated string that contains a phone number that is used, in the lower portion
of the dialog box, to show the effect of the user's changes on the location parameters. The number
must be in canonical format; if noncanonical, the phone number portion of the dialog box does not
display. This pointer can be left NULL, in which case the phone number portion of the dialog box
does not display. If the IpszAddressin parameter contains a subaddress or name field, or additional
addresses separated from the first address by CR and LF characters, only the first address gets used
in the dialog box.
Return Values
Returns zero if request succeeds or anegative error number if an error occurs. Possible return val ues are:
e LINEERR_BADDEVICEID
e LINEERR _INVALPARAM
e LINEERR_INCOMPATIBLEAPIVERSION
e LINEERR_INVALPOINTER
e LINEERR_INIFILECORRUPT
e LINEERR_NODRIVER
e LINEERR_INUSE
e LINEERR_NOMEM
e LINEERR_INVALADDRESS
e LINEERR_INVALAPPHANDLE
e LINEERR_OPERATIONFAILED
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-94a2-m .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Functions

lineUnhold

Description

Function Details

Parameters

lineUnpark

Description

Function Details

Parameters

The lineUnhold function retrieves the specified held call.

LONG lineUnhold (
HCALL hCall
)i

hCall

The handle to the call to be retrieved. The application must be an owner of this call. The call state
of hCall must be onHold, onHoldPendingTransfer, or onHoldPendingConference.

ThelineUnpark function retrievesthe call that is parked at the specified address and returnsacall handle
for it.

LONG WINAPI lineUnpark(
HLINE hLine,
DWORD dwAddressID,
LPHCALL IphCall,
LPCSTR lpszDestAddress

hLine
Handl e to the open line device on which a call isto be unparked.
dwAddressID

Address on hLine at which the unpark is to be originated. An address identifier permanently
associates with an address; the identifier remains constant across operating system upgrades.

IphCall

Pointer to thelocation of type HCALL where the handle to the unparked call isreturned. This handle
is unrelated to any other handle that previously may have been associated with the retrieved call,
such as the handl e that might have been associated with the call when it was originally parked. The
application acts as the initia sole owner of this call.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

IpszDestAddress

TAPI Line Messages W

Pointer to a null-terminated character buffer that contains the address where the call is parked. The
address displays in standard dialable address format.

TAPI Line Messages

This section describes the line messages that the Cisco Unified TSP supports. These messages notify the
application of asynchronous events such as the a new call arriving in the Cisco Unified CallManager.
The messages get sent to the application using the method that the application specifiesin

linelnitializeEx

Table 3-2 TAPI Line Messages

TAPI Line Messages

LINE_ADDRESSSTATE

LINE_APPNEWCALL

LINE_CALLINFO

LINE_CALLSTATE

LINE_CLOSE

LINE_CREATE

LINE_DEVSPECIFIC

LINE_GENERATE

LINE_LINEDEVSTATE

LINE_MONITORDIGITS

LINE_MONITORTONE

LINE_REMOVE

LINE_REPLY

LINE_REQUEST

LINE_ADDRESSSTATE

Description

Function Details

The LINE_ADDRESSSTATE message gets sent when the status of an address changeson alinethat is
currently open by the application. The application can invoke lineGetAddressStatus to determine the

current status of the address.

LINE ADDRESSSTATE

dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParaml = (DWORD) idAddress;

dwParam2 = (DWORD) AddressState;
dwParam3 = (DWORD) O;

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPILine Messages

Parameters

dwDevice

A handle to the line device.

dwCallbacklnstance

The callback instance supplied when the line is opened.

dwParaml1

The address identifier of the address that changed status.

dwParam?2

The address state that changed. Can be a combination of these values:
LINEADDRESSSTATE_OTHER

Address-status items other than those listed below changed. The application should check the
current address status to determine which items changed.

LINEADDRESSSTATE_DEVSPECIFIC

The device-specific item of the address status changed.
LINEADDRESSSTATE_INUSEZERO

The address changed to idle (it is now in use by zero stations).
LINEADDRESSSTATE_INUSEONE

The address changed from idle or from being used by many bridged stations to being used by
just one station.

LINEADDRESSSTATE_INUSEMANY

The monitored or bridged address changed from being used by one station to being used by
more than one station.

LINEADDRESSSTATE_NUMCALLS

The number of calls on the address has changed. This change results from events such as a new
inbound call, an outbound call on the address, or a call changing its hold status.

LINEADDRESSSTATE_FORWARD

The forwarding status of the address changed, including the number of rings for determining a
no-answer condition. The application should check the address statusto determine details about
the address's current forwarding status.

LINEADDRESSSTATE_TERMINALS
The terminal settings for the address changed.
LINEADDRESSSTATE_CAPSCHANGE

Indicates that due to configuration changes that the user made, or other circumstances, one or
more of the membersin the LINEADDRESSCAPS structure for the address changed. The
application should use lineGetAddressCaps to read the updated structure. Applications that
support API versions earlier than 1.4 receive aLINEDEV STATE_REINIT message that
requires them to shut down and reinitialize their connection to TAPI to obtain the updated
information.

dwParam3 is not used.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Messages W

LINE_APPNEWCALL

Description
The LINE_APPNEWCALL message informs an application when anew call handle was spontaneously

created onits behalf (other than through an API call from the application, in which case the handle would
have been returned through a pointer parameter that passed into the function).

Function Details

LINE APPNEWCALL

dwDevice = (DWORD) hLine;

dwCallbackInstance = (DWORD) dwInstanceData;

dwParaml = (DWORD) dwAddressID;

dwParam2 = (DWORD) hCall;

dwParam3 = (DWORD) dwPrivilege;
Parameters

dwDevice

The handle of the application to the line device on which the call was created.
dwCallbacklnstance

The callback instance that is supplied when the line belonging to the call is opened.
dwParaml

Identifier of the address on the line on which the call appears.
dwParam?2

The handle of the application to the new call.
dwParam3

The privilege of the application to the new call (LINECALLPRIVILEGE_OWNER or
LINECALLPRIVILEGE_MONITOR).

LINE_CALLINFO

Description

The TAPI LINE_CALLINFO message gets sent when the call information about the specified call has
changed. The application can invoke lineGetCallInfo to determine the current call information.

Function Details

LINE CALLINFO

hDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParaml = (DWORD) CallInfoState;
dwParam2 = (DWORD) O0;

dwParam3 = (DWORD) O0;

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Messages

Parameters

hDevice

A handleto the call.
dwCallbacklnstance

The callback instance that is supplied when the call's line is opened.
dwParaml1

The call information item that changed. Can be one or more of the
LINECALLINFOSTATE_ constants.

dwParam?2 is not used.

dwParam3 is not used.

LINE_CALLSTATE

Description

The LINE_CALLSTATE message gets sent when the status of the specified call changed. Typically,
several such messages are received during the lifetime of acall. Applications get notified of new
incoming calls with this message; the new call isin the offering state. The application can use the
lineGetCallStatus function to retrieve more detailed information about the current status of the call.

Function Details

LINE CALLSTATE

dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParaml = (DWORD) CallState;

dwParam2 = (DWORD) CallStateDetail;
dwParam3 = (DWORD) CallPrivilege;

Parameters

dwDevice

A handleto the call.
dwCallbacklnstance

The callback instance that is supplied when the line belonging to this call is opened.
dwParaml1

The new call state. Cisco Unified TSP supports only the following LINECALLSTATE_ values:

LINECALLSTATE_IDLE

Thecall isidle; no cal actualy exists.
LINECALLSTATE_OFFERING

Thecall isbeing offered to the station, signaling the arrival of anew call. In some environments,
acall in the offering state does not automatically alert the user. The switch instructing the line
to ring does alerts; it does not affect any call states.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation
TAPI Line Messages W
LINECALLSTATE_ACCEPTED
The call was offering and has been accepted. This indicates to other (monitoring) applications
that the current owner application has claimed responsibility for answering the call. In ISDN,
this also indicates that alerting to both parties has started.
LINECALLSTATE _CONFERENCED
The call is amember of a conference call and islogically inthe connected state.
LINECALLSTATE DIALTONE
Thecall isreceiving adial tone from the switch, which meansthat the switch isready to receive
adialed number.
LINECALLSTATE _DIALING
Destination address information (a phone number) is being sent to the switch over thecall. The
lineGenerateDigits does not place the line into the dialing state.
LINECALLSTATE_RINGBACK
The call isreceiving ringback from the called address. Ringback indicates that the other station
has been reached and is being alerted.
LINECALLSTATE_ONHOLDPENDCONF
The call is currently on hold while it is being added to a conference.
LINECALLSTATE _CONNECTED
The call has been established and the connection is made. Information can flow over the call
between the originating address and the destination address.
LINECALLSTATE _PROCEEDING
Dialing completed, and the call is proceeding through the switch or telephone network.
LINECALLSTATE _ONHOLD
The call is on hold by the switch.
LINECALLSTATE_ONHOLDPENDTRANSFER
The call is currently on hold awaiting transfer to another number.
LINECALLSTATE_DISCONNECTED
The remote party disconnected from the call.
LINECALLSTATE_UNKNOWN
The state of the call is not known. This state may be due to limitations of the call-progress
detection implementation.
Cisco Unified TSP supports two new call states that indicate more information about the call
state within the Cisco Unified CallManager setup. The standard TAPI call stateis set to
LINECALLSTATE_UNKNOWN and the following call states will be ORed with the unknown
call state.
#define CLDSMT_CALL_PROGRESSING_STATE 0x0100000
The Progressing state indicates that the call isin progress over the network. The application has
to negotiate extension version 0x00050001 to receive this call state.
#define CLDSMT_CALL_WAITING_STATE 0x02000000
The waiting state indicates that the REFER request is in progress on Referrer's line and the
application should not request any other function on this call. All the requests will result in
LINEERR_INVALCALLSTATE. Application has to negotiate extension version 0x00070000
to receive this call state.
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .EEI

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Messages

dwParam?2
Call-state-dependent information.

Note

If dwParaml is LINECALLSTATE_CONNECTED, dwParam2 contains details about the
connected mode. This parameter uses the following LINECONNECTEDMODE __ constants:

— LINECONNECTEDMODE_ACTIVE
Call is connected at the current station (the current station acts as a participant in the call).
— LINECONNECTEDMODE_INACTIVE

Call isactive at one or more other stations, but the current station is not a participant in the
cal.

When acall is disconnected with cause code = DISCONNECTMODE_TEMPFAILURE and the
lineState = LINEDEV STATE_INSERVICE, applications must take care of dropping the call.
If the application is terminating media for a device, then it is also the responsibility of the
application to stop the RTP streams for the same call. Cisco Unified TSP will not provide Stop
Transmission/Reception events to applications in this scenario. The behavior is exactly the
same with IP Phones. The User needs to hang up the disconnected - temp fail call on IPPhone
to stop the media. The application is also responsible for stopping the RTP streams in case the
line goes out of service (LINEDEV STATE_OUTOFSERVICE) and thecall on alineisreported
as|IDLE.

If an application with negotiated extension version 0x00050001 or greater receives
device-specific CLDSMT_CALL_PROGRESSING_STATE = 0x01000000 with
LINECALLSTATE_UNKNOWN, then the cause code will be reported as the standard Q931
cause codes in dwParam?2.

If dwParamlis LINECALLSTATE_DIALTONE, dwParam2 contains the details about the dial
tone mode. This parameter uses the following LINEDIALTONEMODE _ constant:

LINEDIALTONEMODE_UNAVAIL
The dial tone mode is unavailable and cannot become known.

If dwParaml is LINECALLSTATE_OFFERING, dwParam?2 contains details about the
connected mode. This parameter uses the following LINEOFFERINGMODE __ constants:

LINEOFFERINGMODE_ACTIVE

The call aerts at the current station (accompanied by LINEDEV STATE_RINGING
messages) and, if an application is set up to automatically answer, it answers. For TAPI
versions 1.4 and later, if the call state mode is ZERO, the application assumesthat the value
is active (which is the situation on a non-bridged address).

Note The Cisco Unified TSP does not send LINEDEV STATE_RINGING messages until the call

is accepted and movesto the LINECALLSTATE_ACCEPTED state. IP_phones auto-accept
calls. CTI portsand CTI route points do not auto-accept calls. Call the lineAccept() function
to accept the call at these types of devices.

If dwParamlis LINECALLSTATE _DISCONNECTED, dwParam2 contains details about the
disconnect mode. This parameter uses the following LINEDISCONNECTMODE _ constants:

LINEDISCONNECTMODE_NORMAL
This specifiesa“normal” disconnect request by the remote party; call terminated normally.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Messages W

LINEDISCONNECTMODE_UNKNOWN

The reason for the disconnect request is unknown.
LINEDISCONNECTMODE_REJECT

The remote user rejected the call.
LINEDISCONNECTMODE_BUSY

The station that belongs to the remote user is busy.
LINEDISCONNECTMODE_NOANSWER

The station that belongs to the remote user does not answer.
LINEDISCONNECTMODE_CONGESTION

The network is congested.
LINEDISCONNECTMODE_UNAVAIL

The reason for the disconnect is unavailable and cannot become known later.
LINEDISCONNECTMODE_FACCMC

The call has been disconnected by the FAC/CMC feature.

S

Note LINEDISCONNECTMODE_FACCMC isonly returned if the extension version negotiated on
the line is 0x00050000 (5.0) or higher. If the negotiated extension version is not at least
0x00050000, then the TSP will set the disconnect mode to
LINEDISCONNECTMODE_UNAVAIL.

dwParam3

LINE_CLOSE

Description

If zero, this parameter indicates that there has not been a change in the privilege for the call to this
application.

If nonzero, this parameter specifies the privilege for the application to the call. This occursin the

following situations: (1) The first time that the application receives a handle to this call; (2) When
the application is the target of a call hand-off (even if the application already was an owner of the

call). This parameter uses the following LINECALLPRIVILEGE_ constants:

LINECALLPRIVILEGE_MONITOR

The application has monitor privilege.

LINECALLPRIVILEGE_OWNER

The application has owner privilege.

The LINE_CL OSE message gets sent when the specified line device has been forcibly closed. The line
device handle or any call handlesfor callson the line are no longer valid after this message has been sent.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Messages

Function Details

LINE CLOSE
dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParaml = (DWORD) O0;
dwParam2 = (DWORD) O0;
dwParam3 = (DWORD) O0;

Parameters
dwDevice

A handleto the line device that was closed. This handle is no longer valid
dwCallbacklnstance

The callback instance that is supplied when the line belonging to this call is opened.
dwParaml is not used.
dwParam? is not used.
dwParam3 is not used.

LINE_CREATE

Description

The LINE_CREATE message informs the application of the creation of a new line device.

Y
Note CTI Manager cluster support, extension mobility, change notification, and user addition to the directory
can generate LINE_CREATE events.

Function Details

LINE CREATE

dwDevice = (DWORD) O;
dwCallbackInstance = (DWORD) O;
dwParaml = (DWORD) idDevice;
dwParam2 = (DWORD) O0;

dwParam3 = (DWORD) O;

Parameters

dwDevice is not used.
dwCallbacklnstance is not used.
dwParaml1
The dwDevicelD of the newly created device.
dwParam? is not used.
dwParam3 is not used.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

LINE_DEVSPECIFIC

Description

Function Details

Parameters

TAPI Line Messages W

The LINE_DEV SPECIFIC message notifies the application about device-specific events occurring on a
line, address or call. The meaning of the message and interpretation of the parameters are device

specific.

LINE DEVSPECIFIC

dwDevice = (DWORD) hLineOrCall;
dwCallbackInstance = (DWORD) hCallback;
dwParaml = (DWORD) DeviceSpecificl;
dwParam2 = (DWORD) DeviceSpecific2;
dwParam3 = (DWORD) DeviceSpecific3;
dwDevice

A handleto either aline device or call. Thisis device specific.

dwCallbacklnstance

The callback instance that is supplied when the line is opened.

dwParaml is device specific
dwParam? is device specific
dwParam3 is device specific

LINE_GENERATE

Description

Function Details

The TAPI LINE_GENERATE message notifies the application that the current digit or tone generation
terminated. Only one such generation request can bein progress an agiven call at any time. Thismessage

also gets sent when digit or tone generation is canceled.

LINE GENERATE

hDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParaml = (DWORD) GenerateTermination;
dwParam2 = (DWORD) O0;

dwParam3 = (DWORD) O;

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Messages

Parameters

hDevice

A handleto the call.
dwCallbacklnstance

The callback instance that is supplied when the line is opened.
dwParaml1

The reason that digit or tone generation terminated. This parameter must be one and only one of the
LINEGENERATETERM __ constants.

dwParam?2 is not used.
dwParam3

The "tick count" (number of milliseconds since Windows started) at which the digit or tone
generation completed. For API versions earlier than 2.0, this parameter does not get used.

LINE_LINEDEVSTATE

Description

The TAPI LINE_LINEDEV STATE message gets sent when the state of a line device changes. The
application can invoke lineGetLineDevStatus to determine the new status of the line.

Function Details

LINE LINEDEVSTATE

hDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParaml = (DWORD) DeviceState;
dwParam2 = (DWORD) DeviceStateDetaill;
dwParam3 = (DWORD) DeviceStateDetail2;

Parameters

hDevice

A handleto the line device. This parameter is NULL when dwParaml is
LINEDEV STATE_REINIT.

dwCallbacklnstance

The callback instance that is supplied when the line is opened. If the dwParam1 parameter is
LINEDEV STATE_REINIT, the dwCallbackInstance parameter is not valid and is set to zero.

dwParaml1

The line device status item that changed. The parameter can be one or more of the
LINEDEV STATE __ constants.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Messages W

dwParam?2

The interpretation of this parameter depends on the value of dwParam1. If dwParaml is
LINEDEV STATE_RINGING, dwParam2 contains the ring mode with which the switch instructs
the line to ring. Valid ring modes include numbers in the range one to dwNumRingM odes, where
dwNumRingM odes specifies aline device capability.

If dwParaml is LINEDEV STATE_REINIT, and the message was issued by TAPI as a result of
translation of anew APl messageinto aREINIT message, dwParam?2 contai ns the dwM sg parameter
of the original message (for example, LINE_CREATE or LINE_LINEDEVSTATE). If dwParam2
is zero, this indicates that the REINIT message is a"rea" REINIT message that requires the
application to call lineShutdown at its earliest convenience.

dwParam3

The interpretation of this parameter depends on the value of dwParam1. If dwParaml is
LINEDEV STATE_RINGING, dwParam3 contains the ring count for this ring event. The ring count
starts at zero.

If dwParaml is LINEDEV STATE_REINIT, and TAPI issued the message as a result of translation
of anew APl message into a REINIT message, dwParam3 contains the dwParam1 parameter of the
original message (for example, LINEDEVSTATE_TRANSLATECHANGE or some other
LINEDEV STATE_ value, if dwParam2 isLINE_LINEDEV STATE, or the new device identifier, if
dwParam2 isLINE_CREATE).

LINE_MONITORDIGITS

Description

Function Details

Parameters

The LINE_MONITORDIGITS message gets sent when a digit is detected. The lineMonitorDigits
function controls the sending of this message.

LINE MONITORDIGITS

dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParaml (DWORD) Digit;

dwParam2 (DWORD) DigitMode;

dwParam3 (DWORD) O0;

dwDevice

A handleto the call.
dwCallbacklnstance

The callback instance that is supplied when the line for this call is opened.
dwParaml

The low-order byte contains the last digit that is received in ASCII.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Messages

dwParam?2

The digit mode that was detected. This parameter must be one and only one of the following
LINEDIGITMODE __ constant:

— LINEDIGITMODE _DTMF - Detect digitsas DTMF tones. Valid digitsfor DTMF includes ‘' 0’
through ‘9’, “*’, and ‘#'.

dwParam3

The “tick count” (number of milliseconds since Windows started) at which the specified digit was
detected. For API versions earlier than 2.0, this parameter does not get used.

LINE_MONITORTONE

Description

TheLINE_MONITORTONE message gets sent when atoneis detected. The lineM onitorTones function
controls the sending of this message.

~

Note Cisco Unified TSP supports only silent detection through LINE_MONITORTONE.

Function Details

LINE MONITORTONE

dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParaml = (DWORD) dwAppSpecific;
dwParam2 = (DWORD) O0;

dwParam3 = (DWORD) tick count;

Parameters

dwDevice

A handleto the call.
dwCallbacklnstance

The callback instance supplied when opening the line for this call.
dwParaml1

The application-specific dwA ppSpecific member of the LINE_MONITORTONE structure for the
tone that was detected.

dwParam?2 is not used.
dwParam3

The “tick count” (number of milliseconds since Windows started) at which the specified digit was
detected.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Messages W

LINE_REMOVE

Description

Note

Function Details

Parameters

LINE_REPLY

Description

Function Details

Parameters

The LINE_REM OV E message informs an application of the removal (deletion from the system) of aline
device. Generally, this parameter does not get used for temporary removals, such as extraction of
PCMCIA devices, but only for permanent removals in which the device would no longer be reported by
the service provider, if TAPI were reinitialized.

CTI Manager cluster support, extension mobility, change notification, and user deletion from the
directory can generate LINE_REMOVE events.

LINE REMOVE

dwDevice = (DWORD) O0;
dwCallbackInstance = (DWORD) O;
dwParaml = (DWORD) dwDevicelD;
dwParam2 = (DWORD) O0;
dwParam3 = (DWORD) O;

dwDevice isreserved. Set to zero.
dwCallbacklnstance is reserved. Set to zero.
dwParaml1

Identifier of the line device that was removed.
dwParam? is reserved. Set to zero.
dwParam3 is reserved. Set to zero.

The LINE_REPLY message reports the results of function calls that completed asynchronously.

LINE REPLY

dwDevice = (DWORD) O;
dwCallbackInstance = (DWORD) hCallback;
dwParaml = (DWORD) idRequest;

dwParam2 = (DWORD) Status;

dwParam3 = (DWORD) O;

dwDeviceis not used.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Messages

dwCallbacklnstance
Returns the callback instance for this application.
dwParaml
The reguest identifier for which thisisthe reply.
dwParam?2
The success or error indication. The application should cast this parameter into along integer:
— Zero indicates success.
— A negative number indicates an error.
dwParam3 is not used.

LINE_REQUEST

Description

The TAPI LINE_REQUEST message reports the arrival of a new request from another application.

Function Details

LINE REQUEST

hDevice = (DWORD) O;

dwCallbackInstance = (DWORD) hRegistration;
dwParaml = (DWORD) RequestMode;

dwParam2 = (DWORD) RequestModeDetaill;
dwParam3 = (DWORD) RequestModeDetail2;

Parameters

hDevice is not used.
dwCallbacklnstance

The registration instance of the application that is specified on lineRegisterRequestReci pient.
dwParaml

The request mode of the newly pending request. This parameter uses the LINEREQUESTMODE _
constants.

dwParam?2

If dwParaml is set to LINEREQUESTMODE_DROP, dwParam2 contains the hwnd of the
application that requests the drop. Otherwise, dwParam2 does not get used.

dwParam3

If dwParaml is set to LINEREQUESTMODE_DROP, the low-order word of dwParam3 contains
the wRequestID as specified by the application requesting the drop. Otherwise,

dwParam3 is not used.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Device Structures

TAPI Line Device Structures

Table 3-3 liststhe TAPI line device structures that the Cisco Unified TSP supports. This section liststhe
possible values for the structure members as set by the TSP, and provides a cross reference to the
functions that use them. If the value of a structure member is device, line, or call specific, the system
notes the value for each condition.

Table 3-3 TAPI Line Device Structures

TAPI Line Device Structures
LINEADDRESSCAPS
LINEADDRESSSTATUS
LINEAPPINFO
LINECALLINFO
LINECALLLIST
LINECALLPARAMS
LINECALLSTATUS
LINECARDENTRY
LINECOUNTRYENTRY
LINECOUNTRYLIST
LINEDEVCAPS
LINEDEVSTATUS
LINEEXTENSIONID
LINEFORWARD
LINEFORWARDLIST
LINEGENERATETONE
LINEINITIALIZEEXPARAMS
LINELOCATIONENTRY
LINEMESSAGE
LINEMONITORTONE
LINEPROVIDERENTRY
LINEPROVIDERLIST
LINEREQMAKECALL
LINETRANSLATECAPS
LINETRANSLATEOUTPUT

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

Members Values

dwLineDevicel D For All Devices:
The device identifier of the line device with which this address
is associated.

dwAddressSize For All Devices:

dwA ddressOffset The size, in bytes, of the variably sized address field and the
offset, in bytes, from the beginning of this data structure

dwDevSpecificSize For All Devices:

dwDev SpecificOff set 0

dwAddressSharing For All Devices:
0

dwAddressStates For All Devices (except Park DNs):
LINEADDRESSSTATE_FORWARD
For Park DNs:
0

dwCalllnfoStates For All Devices (except Park DNS):

LINECALLINFOSTATE_CALLEDID
LINECALLINFOSTATE_CALLERID
LINECALLINFOSTATE_CALLID
LINECALLINFOSTATE_CONNECTEDID
LINECALLINFOSTATE_MEDIAMODE
LINECALLINFOSTATE_MONITORMODES
LINECALLINFOSTATE_NUMMONITORS
LINECALLINFOSTATE_NUMOWNERDECR
LINECALLINFOSTATE_NUMOWNERINCR
LINECALLINFOSTATE_ORIGIN
LINECALLINFOSTATE_REASON
LINECALLINFOSTATE_REDIRECTINGID
LINECALLINFOSTATE_REDIRECTIONID

For Park DNs:

LINECALLINFOSTATE _CALLEDID
LINECALLINFOSTATE_CALLERID
LINECALLINFOSTATE_CALLID
LINECALLINFOSTATE_CONNECTEDID
LINECALLINFOSTATE_NUMMONITORS
LINECALLINFOSTATE_ NUMOWNERDECR
LINECALLINFOSTATE_NUMOWNERINCR
LINECALLINFOSTATE_ORIGIN
LINECALLINFOSTATE_REASON
LINECALLINFOSTATE_REDIRECTINGID
LINECALLINFOSTATE_REDIRECTIONID

dwCallerIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Device Structures

Members Values

dwCalledIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN

dwConnectedl DFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwRedirection|DFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwRedirectingl DFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN

dwcCallStates For 1P Phones and CTI Ports:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE _DIALING
LINECALLSTATE _DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE _OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_ONHOLDPENDCONF
LINECALLSTATE_ONHOLDPENDTRANSFER
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

For CTI Route Points (without media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_UNKNOWN

For CTI Route Points (with media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_ONHOLD
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_UNKNOWN

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

Members Values

dwCallStates (continued) For Park DNs:

LINECALLSTATE _ACCEPTED
LINECALLSTATE _CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_UNKNOWN

dwDia ToneModes For IP Phones and CTI Ports:
LINEDIALTONEMODE_UNAVAIL

For CTI Route Points and Park DNs:

0
dwBusyModes For All Devices:

0
dwSpeciallnfo For All Devices:

0
dwDisconnectM odes For All Devices:

LINEDISCONNECTMODE_BADDADDRESS
LINEDISCONNECTMODE_BUSY
LINEDISCONNECTMODE_CONGESTION
LINEDISCONNECTMODE_FORWARDED
LINEDISCONNECTMODE_NOANSWER
LINEDISCONNECTMODE_NORMAL
LINEDISCONNECTMODE_REJECT
LINEDISCONNECTMODE_TEMPFAILURE
LINEDISCONNECTMODE_UNREACHABLE
LINEDISCONNECTMODE_FACCMC (if negotiated
extension version is 0x00050000 or greater)

dwMaxNumActiveCalls For IP Phones, CTI Ports, and Park DNs:
1

For CTI Route Points (without media):
0

For CTI Route Points (with media):
Cisco Unified CallManager Administration configuration

dwMaxNumOnHoldCalls For 1P Phones, CTI Ports:
200

For CTI Route Points:
0

For CTI Route Points (with media):
Cisco Unified CallManager Administration configuration
(same configuration as dwMaxNumA ctiveCalls)

For Park DNs:
1

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Device Structures

Members Values

dwMaxNumOnHoldPendingCalls For 1P Phones and CTI Ports:
1

For CTI Route Points and Park DNs:
0

dwMaxNumConference For IP Phones, CTI Ports, and Park DNs:
16

For CTI Route Points:
0

dwMaxNumTransConf For All Devices:
0

dwA ddrCapFlags For IP Phones:

LINEADDRCAPFLAGS CONFERENCEHELD
LINEADDRCAPFLAGS DIALED
LINEADDRCAPFLAGS FWDSTATUSVALID
LINEADDRCAPFLAGS PARTIALDIAL
LINEADDRCAPFLAGS TRANSFERHELD

For CTI Ports:

LINEADDRCAPFLAGS CONFERENCEHELD
LINEADDRCAPFLAGS DIALED
LINEADDRCAPFLAGS ACCEPTTOALERT
LINEADDRCAPFLAGS FWDSTATUSVALID
LINEADDRCAPFLAGS PARTIALDIAL
LINEADDRCAPFLAGS TRANSFERHELD

For CTI Route Points:
LINEADDRCAPFLAGS ACCEPTTOALERT
LINEADDRCAPFLAGS FWDSTATUSVALID
LINEADDRCAPFLAGS ROUTEPOINT

For Park DNs:
LINEADDRCAPFLAGS NOEXTERNALCALLS
LINEADDRCAPFLAGS NOINTERNALCALLS

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

Members Values

dwCallFeatures For 1P Phones (except VG248 and ATA186) and CTI Ports:
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ADDTOCONF
LINECALLFEATURE_ANSWER
LINECALLFEATURE _BLINDTRANSFER
LINECALLFEATURE _COMPLETETRANSF
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_PARK
LINECALLFEATURE_PREPAREADDTOCONF
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_SETUPCONF
LINECALLFEATURE_SETUPTRANSFER
LINECALLFEATURE_UNHOLD
LINECALLFEATURE_UNPARK

For VG248 and ATA 186 Devices:
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ADDTOCONF
LINECALLFEATURE _BLINDTRANSFER
LINECALLFEATURE _COMPLETETRANSF
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_PARK
LINECALLFEATURE_PREPAREADDTOCONF
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_SETUPCONF
LINECALLFEATURE_SETUPTRANSFER
LINECALLFEATURE_UNHOLD
LINECALLFEATURE_UNPARK

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Device Structures

Members Values

dwCallFeatures (continued) For CTI Route Points (without media):
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_DROP
LINECALLFEATURE_REDIRECT

For CTI Route Points (with media):
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ANSWER
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_UNHOLD

For Park DNs:
0

dwRemoveFromConfCaps For All Devices:
0

dwRemoveFromConfState For All Devices:
0

dwTransferModes For 1P Phones and CTI Ports:
LINETRANSFERMODE_TRANSFER
LINETRANSFERMODE_CONFERENCE

For CTI Route Points and Park DNs:
0

dwParkM odes For 1P Phones and CTI Ports:
LINEPARKMODE_NONDIRECTED

For CTI Route Points and Park DNs:
0

dwForwardModes For All Devices (except ParkDNSs):
LINEFORWARDMODE_UNCOND

For Park DNs:
0

dwM axForwardEntries For All Devices (except ParkDNSs):
1

For Park DNs:
0

dwM axSpecificEntries For All Devices:
0

dwMinFwdNumRings For All Devices:
0

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

TAPI Line Device Structures

Members Values
dwM axFwdNumRings For All Devices:
0
dwMaxCallCompletions For All Devices:
0
dwCallCompletionConds For All Devices:
0
dwCallCompletionM odes For All Devices:
0
dwNumCompl etionM essages For All Devices:
0
dwCompletionM sgTextEntrySize For All Devices:
0
dwCompletionM sgTextSize For All Devices:
dwCompl etionM sgTextOff set 0

dwA ddressFeatures

For 1P Phones and CTI Ports:
LINEADDRFEATURE_FORWARD
LINEADDRFEATURE_FORWARDFWD
LINEADDRFEATURE _MAKECALL

For CTI Route Points:
LINEADDRFEATURE_FORWARD
LINEADDRFEATURE_FORWARDFWD

For Park DNs:
0

dwPredictiveAutoTransferStates

For All Devices:
0

dwNumCallTreatments

For All Devices:
0

dwCallTreatmentListSize
dwCall TreatmentL istOff set

For All Devices:
0

dwDeviceClassesSize
dwDeviceCl assesOff set

For All Devices (except Park DNs):
“tapi/line"

"tapi/phone”

"wave/in"

"wave/out"

For Park DNs:
"tapi/line"

dwMaxCallDataSize

For All Devices:
0

dwCallFeatures2

For 1P Phones and CTI Ports:
LINECALLFEATURE2 TRANSFERNORM
LINECALLFEATURE2 TRANSFERCONF

For CTI Route Points and Park DNs:
0

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Device Structures

Members

Values

dwM axNoAnswerTimeout

For 1P Phones and CTI Ports:
4294967295 (OXFFFFFFFF)

For CTI Route Points and Park DNs:
0

dwConnectedM odes

For 1P Phones, CTI Ports
LINECONNECTEDMODE_ACTIVE
LINECONNECTEDMODE_INACTIVE

For Park DNs:
LINECONNECTEDMODE_ACTIVE

For CTI Route Points (without media):
0

For CTI Route Points (with media)
LINECONNECTEDMODE_ACTIVE

dwOfferingModes

For All Devices:
LINEOFFERINGMODE_ACTIVE

dwAuvailableM ediaM odes

For All Devices:
0

LINEADDRESSSTATUS

Members

Values

dwNumlInUse

For All Devices:
1

dwNumActiveCalls

For All Devices:

The number of calls on the address that are in call states other
than idle, onhold, onholdpendingtransfer, and
onholdpendingconference.

dwNumOnHoldCalls

For All Devices:
The number of calls on the address in the onhold state.

dwNumOnHoldPendCalls

For All Devices:
The number of calls on the address in the
onholdpendingtransfer or the onholdpendingconference state.

dwA ddressFeatures

For 1P Phones and CTI Ports:
LINEADDRFEATURE_FORWARD
LINEADDRFEATURE_FORWARDFWD
LINEADDRFEATURE_MAKECALL

For CTI Route Points:
LINEADDRFEATURE_FORWARD
LINEADDRFEATURE_FORWARDFWD

For Park DNs:
0

dwNumRingsNoAnswer

For All Devices:
0

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

Members

Values

dwForwardNumEntries

For All Devices (except Park DNs):
The number of entriesin the array referred to by
dwForwardSize and dwForwardOffset.

For Park DNs:
0

dwForwardSize
dwForwardOff set

For All Devices (except Park DNS):

The size, in bytes, and the offset, in bytes, from the beginning
of this data structure of the variably sized field that describes
the address's forwarding information. Thisinformation appears
as an array of dwForwardNumEntries elements, of type
LINEFORWARD. The offsets of the addressesin the array are
relative to the beginning of the LINEADDRESSSTATUS
structure. The offsets dwCallerAddressOffset and
dwDestAddressOffset in the variably sized field of type
LINEFORWARD pointed to by dwForwardSize and
dwForwardOffset are relative to the beginning of the
LINEADDRESSSTATUS data structure (the "root" container).

For Park DNs:

0
dwTerminalM odesSize For All Devices:
dwTerminalM odesOff set 0
dwDevSpecificSize For All Devices:
dwDev SpecificOff set 0

LINEAPPINFO

Description

The LINEAPPINFO structure contains information about the application that is currently running. The
LINEDEV STATUS structure can contain an array of LINEAPPINFO structures.

Structure Details

typedef struct lineappinfo tag
DWORD dwMachineNameSize;
DWORD dwMachineNameOffset;
DWORD dwUserNameSize;
DWORD dwUserNameOffset;
DWORD dwModuleFilenameSize;
DWORD dwModuleFilenameOffset;
DWORD dwFriendlyNameSize;
DWORD dwFriendlyNameOffset;

DWORD dwMediaModes;
DWORD dwAddressID;

} LINEAPPINFO, *LPLINEAPPINFO;

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Device Structures

Members

Values

dwMachineNameSize
dwM achineNameOffset

Size (bytes) and offset from beginning of LINEDEV STATUS of
a string that specifies the name of the computer on which the
application is executing.

dwUserNameSize
dwUserNameOffset

Size (bytes) and offset from beginning of LINEDEV STATUS of
a string that specifies the user name under whose account the
application is running.

dwM odul eFilenameSize
dwM odul eFilenameOff set

Size (bytes) and offset from beginning of LINEDEV STATUS of
a string that specifies the module filename of the application.
You can use this string in a call to lineHandoff to perform a
directed handoff to the application.

dwFriendlyNameSize
dwFriendlyNameOffset

Size (bytes) and offset from beginning of LINEDEV STATUS of
the string that the application provides to linel nitialize or
linelnitializeEx, which should be used in any display of
applications to the user.

dwM ediaM odes The media types for which the application has requested
ownership of new calls; zero if the line dwPrivileges did not
include LINECALLPRIVILEGE _OWNER when it opened.
dwAddressID If the line handle that was opened by using

LINEOPENOPTION_SINGLEADDRESS containsthe address
identifier specified, set to OXFFFFFFFF if the single address
option was not used.

An address identifier permanently associates with an address;
the identifier remains constant across operating system
upgrades.

LINECALLINFO

Members

Values

hLine

For All Devices:
The handlefor the line device with which this call is associated.

dwLineDevicel D

For All Devices:
The device identifier of the line device with which this call is
associated.

dwAddressID For All Devices:
0

dwBearerM ode For All Devices:
LINEBEARERMODE_SPEECH
LINEBEARERMODE_VOICE

dwRate For All Devices:

0

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

Members

Values

dwMediaMode

For 1P Phones and Park DNs:
LINEMEDIAMODE_INTERACTIVEVOICE

For CTI Ports and CTI Route Points:
LINEMEDIAMODE_AUTOMATEDVOICE
LINEMEDIAMODE_INTERACTIVEVOICE

dwA ppSpecific

For All Devices:

Not interpreted by the API implementation and service
provider. Any owner application of this call can set it with the
lineSetAppSpecific function.

dwCalllD For All Devices:
In some tel ephony environments, the switch or service provider
can assign a unique identifier to each call. Thisallows the call
to be tracked across transfers, forwards, or other events. The
domain of these call IDs and their scopeis service
provider-defined. The dwCalllD member makes this unique
identifier available to the applications. The Cisco Unified TSP
uses dwCalllD to store the "GlobalCallID" of the call. The
"GlobalCallID" represents a unique identifier that allows
applicationsto identify al of the call handlesthat arerelated to
acal.

dwRelatedCalllD For All Devices:
0

dwCallParamFlags For All Devices:
0

dwCallStates

For 1P Phones and CT1 Ports:
LINECALLSTATE _ACCEPTED
LINECALLSTATE _CONFERENCED
LINECALLSTATE _CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE DIALTONE
LINECALLSTATE DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE _OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_ONHOLDPENDCONF
LINECALLSTATE_ONHOLDPENDTRANSFER
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Device Structures

Members Values

dwCallStates (continued) For CTI Route Points (without media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_UNKNOWN

For CTI Route Points (with media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_BUSY
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

For Park DNs:

LINECALLSTATE _ACCEPTED
LINECALLSTATE _CONFERENCED
LINECALLSTATE _CONNECTED
LINECALLSTATE DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE _OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_UNKNOWN

dwM onitorDigitM odes For IP Phones, CTI Ports, and CTI Route Points (with media):
LINEDIGITMODE_DTMF

For CTI Route Points and Park DNs:
0

dwM onitorMediaM odes For 1P Phones and Park DNs:
LINEMEDIAMODE_INTERACTIVEVOICE

For CTI Ports and CTI Route Points:
LINEMEDIAMODE_AUTOMATEDVOICE
LINEMEDIAMODE_INTERACTIVEVOICE

DialParams For All Devices:
0
dwOrigin For All Devices:

LINECALLORIGIN_CONFERENCE
LINECALLORIGIN_EXTERNAL
LINECALLORIGIN_INTERNAL
LINECALLORIGIN_OUTBOUND
LINECALLORIGIN_UNAVAIL
LINECALLORIGIN_UNKNOWN

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

TAPI Line Device Structures

Members

Values

dwReason

For All Devices:
LINECALLREASON_ DIRECT
LINECALLREASON_ FWDBUSY
LINECALLREASON FWDNOANSWER
LINECALLREASON_ FWDUNCOND
LINECALLREASON_ PARKED
LINECALLREASON_PICKUP
LINECALLREASON_REDIRECT
LINECALLREASON_REMINDER
LINECALLREASON_ TRANSFER
LINECALLREASON_ UNKNOWN
LINECALLREASON_UNPARK

dwCompletionID

For All Devices:
0

dwNumOwners

For All Devices:
The number of application modules with different call handles
with owner privilege for the call.

dwNumM onitors

For All Devices:
The number of application modules with different call handles
with monitor privilege for the call.

dwCountryCode For All Devices:
0

dwTrunk For All Devices:
OXxFFFFFFFF

dwCallerIDFlags

For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwCallerIDSize
dwCallerI DOffset

For All Devices:

The size, in bytes, of the variably sized field that contains the
caller party ID number information, and the offset, in bytes,
from the beginning of this data structure.

dwCalleriIDNameSize
dwCallerl DNameOff set

For All Devices:

The size, in bytes, of the variably sized field that contains the
caller party ID name information, and the offset, in bytes, from
the beginning of this data structure.

dwCalledIDFlags

For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN

dwCalledIDSize
dwCalledI DOffset

For All Devices:

The size, in bytes, of the variably sized field that contains the
called-party 1D number information, and the offset, in bytes,
from the beginning of this data structure.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

Cisco Unified TAPI Implementation

TAPI Line Device Structures

Members

Values

dwCalledIDNameSize
dwCalledl DNameOffset

For All Devices:

The size, in bytes, of the variably sized field that contains the
called-party ID nameinformation, and the offset, in bytes, from
the beginning of this data structure.

dwConnectedI DFlags

For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwConnectedI DSize
dwConnectedl DOff set

For All Devices:

The size, in bytes, of the variably sized field that contains the
connected party identifier number information and the offset, in
bytes, from the beginning of this data structure.

dwConnectedl DNameSize
dwConnectedl DNameOff set

For All Devices:

The size, in bytes, of the variably sized field that contains the
connected party identifier name information and the offset, in
bytes, from the beginning of this data structure.

dwRedirectionlDFlags

For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwRedirectionl DSize
dwRedirecti onl DOff set

For All Devices:

The size, in bytes, of the variably sized field that contains the
redirection party identifier number information and the offset,
in bytes, from the beginning of this data structure.

dwRedirectionl DNameSize
dwRedirectionl DNameOff set

For All Devices:

The size, in bytes, of the variably sized field that contains the
redirection party identifier name information and the offset, in
bytes, from the beginning of this data structure.

dwRedirectingl DFlags

For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN

dwRedirectingl DSize
dwRedirectingl DOff set

For All Devices:

The size, in bytes, of the variably sized field that contains the
redirecting party identifier number information and the offset,
in bytes, from the beginning of this data structure.

dwRedirectingl DNameSize
dwRedirectingl DNameOffset

For All Devices:

The size, in bytes, of the variably sized field that contains the
redirecting party identifier name information and the offset, in
bytes, from the beginning of this data structure.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

TAPI Line Device Structures

Members Values
dwAppNameSize For All Devices:
dwA ppNameOffset The size, in bytes, and the offset, in bytes, from the beginning

of this data structure of the variably sized field that holds the
user-friendly application name of the application that first
originated, accepted, or answered the call. This specifies the
name that an application can specify in linelnitializeEx. If the
application specifies no such name, the application's module
filename gets used instead.

dwDisplayableAddressSize

dwDisplayableAddressOffset

For All Devices:

0
dwCalledPartySize For All Devices:
dwCalledParty Off set 0
dwCommentSize For All Devices:
dwCommentOffset 0
dwDisplaySize For All Devices:
dwDisplayOffset 0
dwUserUserInfoSize For All Devices:
dwUserUserInfoOffset 0
dwHighL evel CompSize For All Devices:
dwHighL evel CompOff set 0
dwL owL evel CompSize For All Devices:
dwL owL evel CompOffset 0
dwCharginglnfoSize For All Devices:
dwChargingInfoOffset 0
dwTerminalM odesSize For All Devices:
dwTerminal M odesOff set 0

dwDevSpecificSize
dwDev SpecificOff set

For All Devices:

If dwExtVersion >= 0x00060000 (6.0), this field will point to
TSP_Unicode Party Names structure,

If dwExtVersion >= 0x00070000 (7.0), thisfield will also point
to a common structure which has a pointer to SRTP structure,
DSCPVal ueForAudioCalls value and Partition information.
The structure is defined in the “LINECALLINFO Device
Specific Extensions” section on page 4-4.

ExtendedCallInfo structure contains ExtendedCall Reason
which represents the last feature-related reason that caused a
change in this call’s callinfo/calstatus. The ExtendedCalllnfo
will also provide SIP URL information for all call parties.

dwCall Treatment

For All Devices:
0

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Device Structures

Members Values
dwCallDataSize For All Devices:
dwCallDataOffset 0
dwSendingFlowspecSize For All Devices:
dw SendingFlowspecOffset 0
dwReceivingFlowspecSize For All Devices:
dwReceivingFlowspecOffset 0

LINECALLLIST

Description

The LINECALLLIST structure describes a list of call handles. The lineGetNewCalls and
lineGetConfRelatedCalls functions return a structure of this type.

~

Note You must not extend this structure.

Structure Details

typedef struct linecalllist tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwCallsNumEntries;
DWORD dwCallsSize;
DWORD dwCallsOffset;
} LINECALLLIST, FAR *LPLINECALLLIST;

Members Values

dwTotalSize The total size, in bytes, that is allocated to this data structure.

dwNeededSize The size, in bytes, for this data structure that is needed to hold
all the returned information.

dwUsedSize The size, in bytes, of the portion of this data structure that
contains useful information.

dwCallsNumEntries The number of handlesin the hCalls array.

dwCallsSize The size, in bytes, and the offset, in bytes, from the beginning

dwCallsOffset of this data structure of the variably sized field (which isan

array of HCALL-sized handles).

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter 3

Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

LINECALLPARAMS

3-88

Members Values
dwBearerMode not supported
dwMinRate not supported
dwMaxRate

dwM ediaM ode not supported
dwCallParamFlags not supported
dwAddressMode not supported
dwAddressID not supported
DialParams not supported

dwOrigAddressSize
dwOrigAddressOffset

not supported

dwDisplayableAddressSize
dwDisplayableAddressOffset

not supported

dwCalledPartySize
dwCalledParty Off set

not supported

dwCommentSize
dwCommentOffset

not supported

dwUserUserInfoSize
dwUserUserInfoOffset

not supported

dwHighL evel CompSize
dwHighL evel CompOff set

not supported

dwL owL evel CompSize
dwL owL evel CompOffset

not supported

dwDevSpecificSize
dwDev SpecificOff set

not supported

dwPredictiveAutoTransfer States

not supported

dwTargetAddressSize
dwTargetA ddressOff set

not supported

dwSendingFlowspecSize
dw SendingFlowspecOffset

not supported

dwReceivingFlowspecSize
dwReceivingFlowspecOffset

not supported

dwDeviceClassSize
dwDeviceClassOffset

not supported

dwDeviceConfigSize
dwDeviceConfigOffset

not supported

dwcCallDataSize
dwCallDataOff set

not supported

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Device Structures

Members Values

dwNoAnswerTimeout For All Devices:

The number of seconds, after the completion of dialing, that the
call should be allowed to wait in the PROCEEDING or
RINGBACK state, before the service provider automatically
abandonsit with aLINECALLSTATE_DISCONNECTED and
LINEDISCONNECTMODE_NOANSWER. A valueof 0
indicates that the application does not desire automatic call

abandonment.
dwCallingParty|DSize not supported
dwCallingParty| DOffset
LINECALLSTATUS
Members Values
dwCallState For 1P Phones and CTI Ports:

LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_ONHOLDPENDCONF
LINECALLSTATE_ONHOLDPENDTRANSFER
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

For CTI Route Points (without media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_UNKNOWN

For CTI Route Points (with media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

Members Values

dwCall State (continued) For Park DNs:

LINECALLSTATE _ACCEPTED
LINECALLSTATE _CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_UNKNOWN

dwCallStateM ode For IP Phones, CTI Ports:
LINECONNECTEDMODE_ACTIVE
LINECONNECTEDMODE_INACTIVE
LINEDIALTONEMODE_NORMAL
LINEDIALTONEMODE_UNAVAIL
LINEDISCONNECTMODE_BADADDRESS
LINEDISCONNECTMODE_BUSY
LINEDISCONNECTMODE_CONGESTION
LINEDISCONNECTMODE_FORWARDED
LINEDISCONNECTMODE_NOANSWER
LINEDISCONNECTMODE_NORMAL
LINEDISCONNECTMODE_REJECT
LINEDISCONNECTMODE_TEMPFAILURE
LINEDISCONNECTMODE_UNREACHABLE
LINEDISCONNECTMODE_FACCMC (if negotiated
extension version is 0x00050000 or greater)

For CTI Route Points:
LINEDISCONNECTMODE_BADADDRESS
LINEDISCONNECTMODE_BUSY
LINEDISCONNECTMODE_CONGESTION
LINEDISCONNECTMODE_FORWARDED
LINEDISCONNECTMODE_NOANSWER
LINEDISCONNECTMODE_NORMAL
LINEDISCONNECTMODE_REJECT
LINEDISCONNECTMODE_TEMPFAILURE
LINEDISCONNECTMODE_UNREACHABLE
LINEDISCONNECTMODE_FACCMC (if negotiated
extension version is 0x00050000 or greater)

For Park DNs:
LINECONNECTEDMODE_ACTIVE
LINEDISCONNECTMODE_BADADDRESS
LINEDISCONNECTMODE_BUSY
LINEDISCONNECTMODE_CONGESTION
LINEDISCONNECTMODE_FORWARDED
LINEDISCONNECTMODE_NOANSWER
LINEDISCONNECTMODE_NORMAL
LINEDISCONNECTMODE_REJECT
LINEDISCONNECTMODE_TEMPFAILURE
LINEDISCONNECTMODE_UNREACHABLE

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Device Structures

Members Values

dwCallPrivilege For All Devices
LINECALLPRIVILEGE_MONITOR
LINECALLPRIVILEGE_NONE
LINECALLPRIVILEGE_OWNER

dwCallFeatures For 1P Phones (except VG248 and ATA186) and CTI Ports:
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ADDTOCONF
LINECALLFEATURE_ANSWER
LINECALLFEATURE _BLINDTRANSFER
LINECALLFEATURE _COMPLETETRANSF
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_PARK
LINECALLFEATURE_PREPAREADDTOCONF
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_SETUPCONF
LINECALLFEATURE_SETUPTRANSFER
LINECALLFEATURE_UNHOLD
LINECALLFEATURE_UNPARK

For VG248 and ATA 186 Devices:
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ADDTOCONF
LINECALLFEATURE _BLINDTRANSFER
LINECALLFEATURE _COMPLETETRANSF
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_PARK
LINECALLFEATURE_PREPAREADDTOCONF
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_SETUPCONF
LINECALLFEATURE_SETUPTRANSFER
LINECALLFEATURE_UNHOLD
LINECALLFEATURE_UNPARK

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

Members

Values

dwCallFeatures (continued)

For CTI Route Points (without media):
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_DROP
LINECALLFEATURE_REDIRECT

For CTI Route Points (with media):
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ANSWER
LINECALLFEATURE_BLINDTRANSFER
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_UNHOLD

dwCallFeatures (continued) For Park DNs:

0
dwDevSpecificSize For All Devices:
dwDev SpecificOff set 0

dwCallFeatures2

For 1P Phones and CTI Ports:
LINECALLFEATURE2 TRANSFERNORM
LINECALLFEATURE2 TRANSFERCONF

For CTI Route Points and Park DNs:
0

tStateEntryTime

For All Devices:
The Coordinated Universal Time at which the current call state
was entered.

LINECARDENTRY

Description

The LINECARDENTRY structure describes acalling card. The LINETRANSLATECAPS structure can
contain an array of LINECARDENTRY structures.

S

Note You must not extend this structure.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3

Cisco Unified TAPI Implementation

Structure Details

typedef
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

struct linecardentry tag {
dwPermanentCardID;
dwCardNameSize;
dwCardNameOffset;
dwCardNumberDigits;
dwSameAreaRuleSize;
dwSameAreaRuleOffset;
dwLongDistanceRuleSize;
dwLongDistanceRuleOffset;
dwInternationalRuleSize;

TAPI Line Device Structures

dwInternationalRuleOffset;

dwOptions;

} LINECARDENTRY, FAR *LPLINECARDENTRY;

Members

Members Values

dwPermanentCardID The permanent identifier that identifies the card.

dwCardNameSize Containsanull-terminated string (sizeincludesthe NULL) that

dwCardNameOffset describes the card in a user-friendly manner.

dwCardNumberDigits The number of digits in the existing card number. The card
number itself does not get returned for security reasons (TAPI
stores it in scrambled form). The application can use this
parameter to insert filler bytes into atext control in " password"
mode to show that a number exists.

dwSameAreaRuleSize The offset, in bytes, from the beginning of the

dwSameAreaRuleOff set LINETRANSLATECAPS structure and the total number of
bytesin the dialing rule defined for callsto numbersinthe same
area code. The rule specifies a null-terminated string.

dwLongDistanceRuleSize The offset, in bytes, from the beginning of the

dwLongDistanceRuleOff set LINETRANSLATECAPS structure and the total number of
bytesin the dialing rule that is defined for callsto numbersin
the other areas in the same country or region. The rule specifies
a null-terminated string.

dwlnternational RuleSize The offset, in bytes, from the beginning of the

dwlInternational RuleOffset LINETRANSLATECAPS structure and the total number of
bytesin the dialing rule that is defined for calls to numbersin
other countries/regions. The rule specifies a null-terminated
string.

dwOptions Indicates other settings that are associated with this calling
card, using the LINECARDOPTION _

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-94a2-m .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

LINECOUNTRYENTRY

Description

The LINECOUNTRYENTRY structure provides the information for a single country entry. An array of
one or more of these structures makes up part of the LINECOUNTRY LIST structure that the
lineGetCountry function returns.

~

Note You must not extend this structure.

Structure Details

typedef struct linecountryentry tag {
DWORD dwCountryID;
DWORD dwCountryCode;
DWORD dwNextCountryID;
DWORD dwCountryNameSize;
DWORD dwCountryNameOffset;
DWORD dwSameAreaRuleSize;
DWORD dwSameAreaRuleOffset;
DWORD dwLongDistanceRuleSize;
DWORD dwLongDistanceRuleOffset;
DWORD dwInternationalRuleSize;
DWORD dwInternationalRuleOffset;

} LINECOUNTRYENTRY, FAR *LPLINECOUNTRYENTRY;

Members Values

dwCountrylD The country or region identifier of the entry which specifies an
internal identifier that allows multiple entries to exist in the
country or region list with the same country code (for example,
all countriesin North Americaand the Caribbean share country
code 1, but require separate entriesin the list).

dwCountryCode The actual country code of the country or region that the entry
represents (that is, the digits that would be dialed in an

international call). Only thisvalue should be displayed to users
(Country IDs should never display, asthey could be confusing).

dwNextCountrylD The country identifier of the next entry in the country or region
list. Because country codes and identifiers are not assigned in
numeric sequence, the country or region list representsa single
linked list, with each entry pointing to the next. Thelast country
or region in the list has a dwNextCountryID value of zero.
When the LINECOUNTRY LIST structure is used to obtain the
entirelist, the entriesin thelist appear in sequence as linked by
their dwNextCountrylD members.

dwCountryNameSize The size, in bytes, and the offset, in bytes, from the beginning
dwCountryNameOff set of the LINECOUNTRY LIST structure of a null-terminated
string that gives the name of the country or region.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Device Structures

Members

Values

dwSameAreaRuleSize
dwSameAreaRul eOff set

The size, in bytes, and the offset, in bytes, from the beginning
of the LINECOUNTRYLIST structure of a null-terminated
string that containsthe dialing rule for direct-dialed callsto the
same area code.

dwLongDistanceRuleSize
dwL ongDistanceRul eOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINECOUNTRYLIST structure of a null-terminated
string that contains the dialing rule for direct-dialed calls to
other areas in the same country or region.

dwlinternationalRuleSize
dwlnternational RuleOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINECOUNTRYLIST structure of a null-terminated
string that contains the dialing rule for direct-dialed calls to
other countries/regions.

LINECOUNTRYLIST

Description

The LINECOUNTRYLIST structure describes alist of countries/regions. This structure can contain an
array of LINECOUNTRYENTRY structures. The lineGetCountry function returns

LINECOUNTRYLIST.

S

Note You must not extend this structure.

Structure Details

typedef struct linecountrylist tag {

DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwNumCountries;

DWORD dwCountryListSize;
DWORD dwCountryListOffset;

} LINECOUNTRYLIST, FAR *LPLINECOUNTRYLIST;

Members Values

dwTotalSize The total size, in bytes, that are allocated to this data structure.

dwNeededSize The size, in bytes, for this data structure that is needed to hold
all the returned information.

dwUsedSize The size, in bytes, of the portion of this data structure that

contains useful information.

dwNumCountries

The number of LINECOUNTRYENTRY structures that are
present in the array dwCountryL istSize and
dwCountryListOffset dominate.

dwCountryListSize
dwCountryListOffset

The size, in bytes, and the offset, in bytes, from the beginning
of this data structure of an array of LINECOUNTRY ENTRY
elements that provide information on each country or region.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

LINEDEVCAPS

Members

Values

dwProviderInfoSize
dwProviderlnfoOff set

For All Devices:

The size, in bytes, of the variably sized field that contains
service provider information and the offset, in bytes, from the
beginning of this data structure. The dwProviderinfoSize/
Offset member provides information about the provider
hardware and/or software. Thisinformation can prove useful
when a user needs to call customer service with problems
regarding the provider. The Cisco Unified TSP sets this field
to "Cisco Unified TSPxxx.TSP: Cisco IP PBX Service
Provider Ver. x.x(x.x)" where the text before the colon
specifies the file name of the TSP and the text after "Ver."
specifies the version of TSP.

dwSwitchlnfoSize
dwSwitchlnfoOffset

For All Devices:

The size, in bytes, of the variably sized device field that
contains switch information and the offset, in bytes, from the
beginning of thisdata structure. The dwSwitchlnfoSize/Offset
member providesinformation about the switch towhich theline
device connects, such as the switch manufacturer, the model
name, the software version, and so on. Thisinformation can
prove useful when a user needs to call customer service with
problems regarding the switch. The Cisco Unified TSP sets
this field to "Cisco Unified CallManager Ver. x.x(x.x), Cisco
CTI Manager Ver x.x(x.x)" where the text after "Ver." specifies
the version of the Cisco Unified CallManager and the version
of the CTI Manager, respectively.

dwPermanentLinel D

For All Devices:

The permanent DWORD identifier by which the line deviceis
known in the system's configuration. This identifier specifies a
permanent name for the line device. This permanent name (as
opposed to dwDevicel D) does not change as lines are added or
removed from the system and persiststhrough operating system
upgrades. You can therefore use it to link line-specific
information in .ini files (or other files) in away that is not
affected by adding or removing other lines or by changing the
operating system.

dwLineNameSize
dwLineNameOffset

For All Devices:

The size, in bytes, of the variably sized device field that
contains a user-configurable name for this line device, and the
offset, in bytes, from the beginning of this data structure. You
can configure this name when configuring the line device
service provider, and the name gets provided for the user's
convenience. The Cisco Unified TSP sets this field to “ Cisco
Line: [deviceName] (dirn)” where deviceName specifies the
name of the device on which the line resides, and dirn specifies
the directory number for the device.

dwStringFormat

For All Devices:
STRINGFORMAT_ASCI|I

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3

Cisco Unified TAPI Implementation

TAPI Line Device Structures

Members

Values

dwA ddressM odes

For All Devices:
LINEADDRESSMODE_ADDRESSID

dwNumA ddresses

For All Devices:
1

dwBearerM odes

For All Devices:
LINEBEARERMODE_SPEECH
LINEBEARERMODE_VOICE

dwMaxRate

For All Devices:
0

dwM ediaM odes

For IP Phones and Park DNs:
LINEMEDIAMODE_INTERACTIVEVOICE

For CTI Ports and CTI Route Points:
LINEMEDIAMODE_AUTOMATEDVOICE
LINEMEDIAMODE_INTERACTIVEVOICE

dwGenerateToneM odes

For 1P Phones, CTI Ports, and CTI Route Points (with media):
LINETONEMODE_BEEP

For CTI Route Points (without media) and Park DNs:
0

dwGenerateToneM axNumFreq

For All Devices:
0

dwGenerateDigitM odes

For 1P Phones, CTI Ports, and CTI Route Points (with media):
LINETONEMODE DTMF

For CTI Route Points and Park DNs:

0
dwM onitorToneMaxNumFreq For All Devices:
0
dwMonitorToneMaxNumEntries For All Devices:
0

dwM onitorDigitM odes

For 1P Phones, CTI Ports, and CTI Route Points (with media):
LINETONEMODE DTMF

For CTI Route Points (without media) and Park DNs:
0

dwGatherDigitsMinTimeout

For All Devices:

dwGatherDigitsM ax Timeout 0

dwMedCtIDigitMaxListSize For All Devices:

dwMedCtIMediaM axL istSize 0

dwMedCtlIToneMaxL istSize

dwMedCtlICall StateM axListSize

dwDevCapFlags For IP Phones:
0

For All Other Devices:
LINEDEVCAPFLAGS CLOSEDROP

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

[oL-9442-01

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

Members Values

dwMaxNumActiveCalls For All Devices:
1
For CTI Route Points (without media):
0

For CTI Route Points (with media):
Cisco Unified CallManager Administration configuration

dwAnswerMode For 1P Phones (except for VG248 and ATA186), CTl Route
Points (with media) and CT1 Ports:
LINEANSWERMODE_HOLD

For VG248 devices, ATA186 devices, CTI Route Points
(without media), and Park DNs:

0
dwRingM odes For All Devices:
1
dwLineStates For IP Phones, CTI Ports, and Route Points (with media):

LINEDEV STATE_CLOSE
LINEDEV STATE_DEVSPECIFIC
LINEDEV STATE_INSERVICE
LINEDEV STATE_MSGWAITOFF
LINEDEV STATE_MSGWAITON
LINEDEVSTATE_NUMCALLS
LINEDEV STATE_OPEN

LINEDEV STATE_OUTOFSERVICE
LINEDEVSTATE_REINIT
LINEDEV STATE_RINGING

LINEDEV STATE_TRANSLATECHANGE

For CTI Route Points (without media):
LINEDEVSTATE_CLOSE

LINEDEV STATE_INSERVICE

LINEDEV STATE_OPEN

LINEDEV STATE_OUTOFSERVICE
LINEDEVSTATE_REINIT
LINEDEVSTATE_RINGING
LINEDEVSTATE_TRANSLATECHANGE

For Park DNs:

LINEDEVSTATE _CLOSE
LINEDEVSTATE_DEVSPECIFIC
LINEDEVSTATE_INSERVICE
LINEDEVSTATE_ NUMCALLS

LINEDEV STATE_OPEN
LINEDEVSTATE_OUTOFSERVICE
LINEDEVSTATE_REINIT
LINEDEVSTATE _TRANSLATECHANGE

dwUUIAcceptSize For All Devices:
0

dwUUIAnswerSize For All Devices:
0

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

Cisco Unified TAPI Implementation

TAPI Line Device Structures

Members Values

dwUUIMakeCallSize For All Devices:
0

dwUUIDropSize For All Devices:
0

dwUUISendUserUserInfoSize For All Devices:
0

dwUUICallInfoSize For All Devices:
0

MinDial Params For All Devices:

MaxDialParams 0

DefaultDialParams For All Devices:
0

dwNumTerminals For All Devices:
0

dwTerminal CapsSize For All Devices:

dw Terminal CapsOff set 0

dwTerminal TextEntrySize For All Devices:
0

dwTerminal TextSize For All Devices:

dwTerminal TextOffset 0

dwDevSpecificSize
dwDev SpecificOff set

For All Devices (except ParkDNSs):

If dwExtVersion > 0x00030000 (3.0):
LINEDEVCAPS_DEV_SPECIFIC.m_
DevSpecificFlags = 0

For Park DNs:

If dwExtVersion > 0x00030000 (3.0):
LINEDEVCAPS_DEV_SPECIFIC.m_
DevSpecificFlags =
LINEDEVCAPSDEV SPECIFIC_PARKDN

dwLineFeatures

For IP Phones, CTI Ports, and CTI Route Points (with media):
LINEFEATURE_DEVSPECIFIC
LINEFEATURE_FORWARD
LINEFEATURE_FORWARDFWD
LINEFEATURE_MAKECALL

For CTI Route Points (without media):
LINEFEATURE_FORWARD
LINEFEATURE_FORWARDFWD

For Park DNs:
0

dwSettableDevStatus

For All Devices:
0

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

Members Values

dwDeviceClassesSize For IP Phones and CTI Route Points:
dwDeviceClassesOff set "tapi/line"

"tapi/phone”

For CTI Ports:

"tapi/line"

"tapi/phone”

"wave/in"

"wave/out"

For Park DNs:
"tapi/line"

PermanentLineGuid The GUID that is permanently associated with the line device.

LINEDEVSTATUS

Members Values
dwNumOpens For All Devices:

The number of active opens on the line device.
dwOpenM ediaM odes For All Devices:

Bit array that indicates for which mediatypesthe line deviceis
currently open.

dwNumActiveCalls For All Devices:
The number of calls on the line in call states other than idle,
onhold, onholdpendingtransfer, and onholdpendingconference.

dwNumOnHoldCalls For All Devices:
The number of calls on the line in the onhold state.
dwNumOnHoldPendCalls For All Devices:

The number of calls on theline in the onholdpendingtransfer or
onholdpendingconference state.

dwLineFeatures For IP Phones, CTI Ports, and CT| Route Points (with media):
LINEFEATURE_DEVSPECIFIC
LINEFEATURE_FORWARD
LINEFEATURE_FORWARDFWD
LINEFEATURE_MAKECALL

For CTI Route Points (without media):
LINEFEATURE_FORWARD
LINEFEATURE_FORWARDFWD

For Park DNs:
0

dwNumCallCompl etions For All Devices:
0

dwRingMode For All Devices:
0

dwSignalL evel For All Devices:
0

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation
TAPI Line Device Structures W

Members Values

dwBatteryL evel For All Devices:
0

dwRoamM ode For All Devices:
0

dwDevStatusFlags For 1P Phones and CTI Ports:
LINEDEVSTATUSGLAGS CONNECTED
LINEDEVSTATUSGLAGS INSERVICE
LINEDEVSTATUSGLAGS MSGWAIT
For CTI Route Points and Park DNs:
LINEDEVSTATUSGLAGS CONNECTED
LINEDEVSTATUSGLAGS INSERVICE

dwTerminalM odesSize For All Devices:

dwTerminal M odesOff set 0

dwDevSpecificSize For All Devices:

dwDev SpecificOff set 0

dwAvailableM ediaM odes For All Devices:
0

dwApplnfoSize For All Devices:

dwA pplnfoOffset Length, in bytes, and offset from the beginning of
LINEDEV STATUS of an array of LINEAPPINFO structures.
The dwNumOpens member indicates the number of elementsin
the array. Each element in the array identifies an application
that has the line open.

Members Values

dwExtensionIDO For All Devices:
OX8EBDB6AS50

dwExtensionID1 For All Devices:
0x128011D2

dwExtensionID2 For All Devices:
0x905B0060

dwExtensionlD3 For All Devices:
0xB03DD275

Description

The LINEFORWARD structure describes an entry of the forwarding instructions.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter 3

Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

Structure Details

typedef struct lineforward tag

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

dwForwardMode ;
dwCallerAddressSize;
dwCallerAddressOffset;
dwDestCountryCode;
dwDestAddressSize;
dwDestAddressOffset;

} LINEFORWARD, FAR *LPLINEFORWARD;

Members

Values

dwForwardMode

The types of forwarding. The dwForwardM ode member can
have only a single bit set. This member uses the following
LINEFORWARDMODE __ constants:

LINEFORWARDMODE_UNCOND

Forward all calls unconditionally, irrespective of their
origin. Use this value when unconditional forwarding for
internal and external calls cannot be controlled separately.
Unconditional forwarding overrides forwarding on busy
and/or no-answer conditions.

Note LINEFORWARDMODE_UNCOND is the only
forward mode that Cisco Unified TSP supports.

LINEFORWARDMODE_UNCONDINTERNAL
Forward all internal calls unconditionally. Use this value
when unconditional forwarding for internal and external
calls can be controlled separately.

LINEFORWARDMODE_UNCONDEXTERNAL

Forward all external calls unconditionally. Use this value
when unconditional forwarding for internal and external
calls can be controlled separately.

LINEFORWARDMODE_UNCONDSPECIFIC
Unconditionally forward all calls that originated at a
specified address (selective call forwarding).

LINEFORWARDMODE_BUSY

Forward all calls on busy, irrespective of their origin. Use
this value when forwarding for internal and external calls
both on busy and on no answer cannot be controlled
separately.

LINEFORWARDMODE_BUSYINTERNAL

Forward all internal calls on busy. Use this value when
forwarding for internal and external calls on busy and on
no answer can be controlled separately.

LINEFORWARDMODE_BUSYEXTERNAL

Forward all external calls on busy. Use this value when
forwarding for internal and external calls on busy and on
no answer can be controlled separately.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3

Cisco Unified TAPI Implementation

TAPI Line Device Structures

Members

Values

dwForwardMode (continued)

LINEFORWARDMODE_BUSY SPECIFIC

Forward on busy all calls that originated at a specified

address (selective call forwarding).
LINEFORWARDMODE_NOANSW

Forward al callson no answer, irrespective of their origin.

Use this value when call forwarding for internal and

external callson no answer cannot be controlled separately.
LINEFORWARDMODE_NOANSWINTERNAL

Forward all internal calls on no answer. Use this value

when forwarding for internal and external calls on no

answer can be controlled separately.
LINEFORWARDMODE_NOANSWEXTERNAL

Forward all external calls on no answer. Use this value

when forwarding for internal and external calls on no

answer can be controlled separately.
LINEFORWARDMODE_NOANSWSPECIFIC

Forward all callsthat originated at a specified address on

no answer (selective call forwarding).
LINEFORWARDMODE_BUSYNA

Forward all callson busy or no answer, irrespective of their
origin. Use this value when forwarding for internal and
external calls on both busy and on no answer cannot be
controlled separately.

LINEFORWARDMODE_BUSYNAINTERNAL
Forward all internal calls on busy or no answer. Use this
value when call forwarding on busy and on no answer
cannot be controlled separately for internal calls.
LINEFORWARDMODE_BUSYNAEXTERNAL
Forward all external calls on busy or no answer. Use this
value when call forwarding on busy and on no answer
cannot be controlled separately for internal calls.
LINEFORWARDMODE_BUSYNASPECIFIC
Forward on busy or no answer all calls that originated at a
specified address (selective call forwarding).
LINEFORWARDMODE_UNKNOWN
Calls get forwarded, but the conditions under which
forwarding occurs are not known at this time.
LINEFORWARDMODE_UNAVAIL

Calls are forwarded, but the conditions under which
forwarding occurs are not known and are never known by
the service provider.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

Members Values
dwCallerAddressSize The size in bytes of the variably sized address field that
dwCallerAddressOff set contains the address of a caller to be forwarded and the offset

in bytes from the beginning of the containing data structure.
The dwCallerAddressSize/Offset member gets set to zero if
dwForwardMode is not one of the following choices:
LINEFORWARDMODE_BUSYNASPECIFIC,
LINEFORWARDMODE_NOANSWSPECIFIC,
LINEFORWARDMODE_UNCONDSPECIFIC, or
LINEFORWARDMODE_BUSY SPECIFIC.

dwDestCountryCode The country code of the destination address to which thecall is
to be forwarded.

dwDestAddressSize The size in bytes of the variably sized address field that

dwDestA ddressOff set contains the address of the address where calls are to be

forwarded and the offset in bytes from the beginning of the
containing data structure.

LINEFORWARDLIST

Description

The LINEFORWARDLIST structure describes alist of forwarding instructions.

Structure Details

typedef struct lineforwardlist tag {
DWORD dwTotalSize;
DWORD dwNumEntries;
LINEFORWARD ForwardList[1];
} LINEFORWARDLIST, FAR *LPLINEFORWARDLIST;

Members Values

dwTotalSize The total size in bytes of the data structure.

dwNumEntries Number of entries in the array specified as ForwardList[].

ForwardList[] An array of forwarding instruction. The array entries specify
type LINEFORWARD.

LINEGENERATETONE

Description

The LINEGENERATETONE structure contains information about a tone to be generated. The
lineGenerateTone and TSPI_lineGenerateTone functions use this structure.

~

Note You must not extend this structure.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Device Structures

This structure gets used only for the generation of tones; it does not get used for tone monitoring.

Structure Details

typedef struct linegeneratetone tag {
DWORD dwFrequency;
DWORD dwCadenceOn;
DWORD dwCadenceOff;
DWORD dwVolume;
} LINEGENERATETONE, FAR *LPLINEGENERATETONE;

Members Values

dwFrequency The frequency, in hertz, of this tone component. A service
provider may adjust (round up or down) the frequency that the
application specified to fit its resolution.

dwCadenceOn The “on” duration, in milliseconds, of the cadence of the
custom tone to be generated. Zero means no tone gets
generated.

dwCadenceOff The “off” duration, in milliseconds, of the cadence of the

custom tone to be generated. Zero means no off time, that is, a
constant tone.

dwVolume The volume level at which the tone gets generated. A value of
OX0000FFFF represents full volume, and a value of
0x00000000 means silence.

LINEINITIALIZEEXPARAMS

Description

The LINEINITIZALIZEEXPARAMS structure describes parameters that are supplied when calls are
made using LINEINITIALIZEEX.

Structure Details

typedef struct lineinitializeexparams tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwOptions;

union

{

HANDLE hEvent;

HANDLE hCompletionPort;
} Handles;

DWORD dwCompletionKey;

} LINEINITIALIZEEXPARAMS, FAR *LPLINEINITIALIZEEXPARAMS;

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

Members

Values

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold
all the returned information.

dwUsedSize

The size, in bytes, of the portion of this data structure that
contains useful information.

dwOptions

One of the LINEINITIALIZEEXOPTION_ constants.
Specifies the event notification mechanism that the application
wants to use.

hEvent

If dwOptions specifies
LINEINITIALIZEEXOPTION_USEEVENT,
TAPI returns the event handle in this field.

hCompl etionPort

If dwOptions specifies
LINEINITIALIZEEXOPTION_USECOMPLETIONPORT,
the application must specify in thisfield the handle of an
existing completion port that was opened using

Createl oCompl etionPort.

dwCompletionKey

If dwOptions specifies
LINEINITIALIZEEXOPTION_USECOMPLETIONPORT,the
application must specify in this field avalue that is returned
through the IpCompletionKey parameter of

GetQueuedCompl etionStatus to identify the completion
message as a tel ephony message.

Further Details

See “linelnitializeEx” for further information on these options.

LINELOCATIONENTRY

Description

The LINELOCATIONENTRY structure describes a location that is used to provide an address
translation context. The LINETRANSLATECAPS structure can contain an array of

LINELOCATIONENTRY structures.

~

Note You must not extend this structure.

Structure Details

typedef struct linelocationentry tag {

DWORD dwPermanentLocationID;
DWORD dwLocationNameSize;
DWORD dwLocationNameOffset;
DWORD dwCountryCode;

DWORD dwCityCodeSize;

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3

Cisco Unified TAPI Implementation

DWORD dwCityCodeOffset;
DWORD dwPreferredCardID;
DWORD dwLocalAccessCodeSize;

DWORD dwLocalAccessCodeOffset;

TAPI Line Device Structures

DWORD dwLongDistanceAccessCodeSize;
DWORD dwLongDistanceAccessCodeOffset;

DWORD dwTollPrefixListSize;
DWORD dwTollPrefixListOffset;
DWORD dwCountryID;

DWORD dwOptions;

DWORD dwCancelCallWaitingSize;

DWORD dwCancelCallWaitingOffset;
} LINELOCATIONENTRY, FAR *LPLINELOCATIONENTRY;

Members

Values

dwPermanentL ocationl D

The permanent identifier that identifies the location.

dwL ocationNameSi ze
dwL ocationNameOffset

Containsanull-terminated string (sizeincludesthe NULL) that
describes the location in a user-friendly manner.

dwCountryCode The country code of the location.

dwPreferredCardI D The preferred calling card when dialing from this location.
dwCityCodeSize Contains a null-terminated string that specifies the city or area
dwCityCodeOffset code that is associated with the location (the size includes the

NULL). Applications can use this information, along with the
country code, to “default" entry fields for the user when you
enter the phone numbers, to encourage the entry of proper
canonical numbers.

dwL ocal AccessCodeSize
dwL ocal A ccessCodeOff set

The size, in bytes, and the offset, in bytes, from the beginning
of the LINETRANSLATECAPS structure of a null-terminated
string that contains the access code to be dialed before calls to
addresses in the local calling area.

dwL ongDistanceA ccessCodeSize
dwL ongDistanceA ccessCodeOff set

The size, in bytes, and the offset, in bytes, from the beginning
of the LINETRANSLATECAPS structure of a null-terminated
string that contains the access code to be dialed before calls to
addresses outside the local calling area.

dwTollPrefixListSize
dwTollPrefixListOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINETRANSLATECAPS structure of a null-terminated
string that contains the toll prefix list for the location. The
string contains only prefixes that consist of the digits "0"

through "9" and are separated from each other by asingle ",
(comma) character.

dwCountryl D

The country identifier of the country or region that is selected
for the location. Use this identifier with the lineGetCountry
function to obtain additional information about the specific
country or region, such as the country or region name (the
dwCountryCode member cannot be used for this purpose
because country codes are not unique).

dwOptions

Indicates options in effect for this location with values taken
from the LINELOCATIONOPTION_ Constants.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

Members Values
dwCancel CallWaitingSize The size, in bytes, and the offset, in bytes, from the beginning
dwCancel CalIWaitingOffset of the LINETRANSLATECAPS structure of a null-terminated

string that contains the dial digits and modifier characters that
should be prefixed to the dialable string (after the pulse/tone
character) when an application sets the
LINETRANSLATEOPTION_CANCELCALLWAITING bhitin
the dwTranslateOptions parameter of lineTranslateAddress. If
no prefix is defined, dwCancel Call WaitingSize being set to
zero may indicate this, or it being set to 1 and

dwCancel CallWaitingOffset pointing to an empty string (single
NULL byte) may indicate this.

LINEMESSAGE

Description

The LINEMESSAGE structure contains parameter val ues that specify a change in status of the line that
the application currently has open. The lineGetM essage function returns the LINEM ESSAGE structure.

Structure Details

typedef struct linemessage tag
DWORD hDevice;
DWORD dwMessagelD;
DWORD_PTR dwCallbackInstance;
DWORD PTR dwParaml;
DWORD PTR dwParam2;
DWORD PTR dwParam3;

} LINEMESSAGE, FAR *LPLINEMESSAGE;

Members Values

hDevice A handle to either aline device or a call. The context that is
provided by dwMessagel D can determine the nature of this
handle (line handle or call handle).

dwM essagel D A line or call device message.

dwCallbacklnstance Instance data passed back to the application, which the
application in the dwCallBacklInstance parameter of
linelnitializeEx specified. TAPI does not interpret this

DWORD.
dwParam1 A parameter for the message.
dwParam?2 A parameter for the message.
dwParam3 A parameter for the message.

Further Details

For details about the parameter values that are passed in this structure, see “TAPI Line Messages.”

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

LINEMONITORTONE

Description

TAPI Line Device Structures

The LINEMONITORTONE structure defines atone for the purpose of detection. Usethisasan entry in
an array. An array of tones gets passed to the lineMonitorTones function that monitors these tones and
sends aLINE_MONITORTONE message to the application when a detection is made.

A tone with all frequencies set to zero corresponds to silence. An application can thus monitor the call

information stream for silence.

S

Note You must not extend this structure.

Structure Details

typedef struct linemonitortone tag {

DWORD dwAppSpecific;
DWORD dwDuration;

DWORD dwFrequencyl;
DWORD dwFrequency2;
DWORD dwFrequency3;

} LINEMONITORTONE, FAR *LPLINEMONITORTONE;

Members

Values

dwA ppSpecific

Used by the application for tagging the tone. When thistoneis
detected, the value of the dwA ppSpecific member gets passed
back to the application.

dwDuration

The duration, in milliseconds, during which the tone should be
present before a detection is made.

dwFrequencyl

dwFrequency?2

dwFrequency3

The frequency, in hertz, of a component of the tone. If fewer
than three frequencies are needed in the tone, avalue of 0
should be used for the unused frequencies. A tone with all three
frequencies set to zero gets interpreted as silence and can be
used for silence detection.

LINEPROVIDERENTRY

Description

The LINEPROVIDERENTRY structure provides the information for asingle service provider entry. An
array of these structures gets returned as part of the LINEPROVIDERLIST structure that the function

lineGetProviderList returns.

Note You cannot extend this structure.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

Structure Details

typedef struct lineproviderentry tag {
DWORD dwPermanentProviderID;
DWORD dwProviderFilenameSize;
DWORD dwProviderFilenameOffset;

} LINEPROVIDERENTRY, FAR *LPLINEPROVIDERENTRY;

Members Values

dwPermanentProvider|D The permanent provider identifier of the entry.

dwProviderFilenameSize The size, in bytes, and the offset, in bytes, from the beginning

dwProviderFilenameOffset of the LINEPROVIDERLIST structure of a null-terminated
string containing the filename (path) of the service provider
DLL (.TSP) file.

LINEPROVIDERLIST

Description

The LINEPROVIDERLIST structure describes a list of service providers. The lineGetProviderList
function returns a structure of this type. The LINEPROVIDERLIST structure can contain an array of

LINEPROVIDERENTRY structures.

~

Note You must not extend this structure.

Structure Details

typedef struct lineproviderlist tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwNumProviders;
DWORD dwProviderListSize;
DWORD dwProviderListOffset;

} LINEPROVIDERLIST, FAR *LPLINEPROVIDERLIST;

Members Values

dwTotalSize The total size, in bytes, that are allocated to this
data structure.

dwNeededSize The size, in bytes, for this data structure that is
needed to hold all the returned information.

dwUsedSize The size, in bytes, of the portion of this data

structure that contains useful information.

dwNumProviders

The number of LINEPROVIDERENTRY
structures that are present in the array that is
denominated by dwProviderListSize and
dwProviderListOff set.

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Device Structures

Members Values
dwProviderListSize The size, in bytes, and the offset, in bytes, from
dwProviderListOffset the beginning of this data structure of an array of

LINEPROVIDERENTRY elements, which
provide the information on each service provider.

LINEREQMAKECALL

Description

The LINEREQMAKECALL structure describes arequest that isinitiated by acall to the lineGetRequest
function.

~

Note You cannot extend this structure.

Structure Details

typedef struct lineregmakecall tag {
char szDestAddress [TAPIMAXDESTADDRESSSIZE] ;
char szAppName [TAPIMAXAPPNAMESIZE] ;
char szCalledParty[TAPIMAXCALLEDPARTYSIZE] ;
char szComment [TAPIMAXCOMMENTSIZE] ;

} LINEREQMAKECALL, FAR *LPLINEREQMAKECALL;

Members Values
szDestAddress The null-terminated destination address of the make-call
[TAPIMAXADDRESSSIZE] reguest. The address uses the canonical address format or the

dialable address format. The maximum length of the address
specifies TAPIMAXDESTADDRESSSIZE characters, which
include the NULL terminator. Longer strings get truncated.

szAppName The null-terminated, user-friendly application name or
[TAPIMAXAPPNAMESIZE] filename of the application that originated the request. The
maximum length of the address specifies
TAPIMAXAPPNAMESIZE characters, which include the
NULL terminator.

szCalledParty The null-terminated, user-friendly called-party name. The
[TAPIMAXCALLEDPARTYSIZE] |maximum length of the called-party information specifies
TAPIMAXCALLEDPARTY SIZE characters, which include
the NULL terminator.

szComment The null-terminated comment about the call request. The
[TAPIMAXCOMMENTSIZE] maximum length of the comment string specifies
TAPIMAXCOMMENTSIZE characters, which include the
NULL terminator.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

LINETRANSLATECAPS

Description

The LINETRANSL ATECAPS structure describes the address transl ation capabilities. This structure can
contain an array of LINELOCATIONENTRY structures and an array of LINECARDENTRY structures.
the lineGetTransl ateCaps function returns the LINETRANSLATECAPS structure.

~

Note You must not extend this structure.

Structure Details

typedef struct linetranslatecaps_tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwNumLocations;
DWORD dwLocationListSize;
DWORD dwLocationListOffset;
DWORD dwCurrentLocationID;
DWORD dwNumCards;
DWORD dwCardListSize;
DWORD dwCardListOffset;
DWORD dwCurrentPreferredCardID;
} LINETRANSLATECAPS, FAR *LPLINETRANSLATECAPS;

Members Values

dwTotalSize The total size, in bytes, that is allocated to this data structure.

dwNeededSize The size, in bytes, for this data structure that is needed to hold
all the returned information.

dwUsedSize The size, in bytes, of the portion of this data structure that
contains useful information.

dwNumL ocations The number of entriesin the location list. It includes all
locations that are defined, including zero (default).

dwLocationListSize List of locationsthat are known to the address translation. The

dwL ocationListOffset list comprises a sequence of LINELOCATIONENTRY

structures. The dwL ocationListOffset member points to the
first byte of the first LINELOCATIONENTRY structure, and
the dwL ocationListSize member indicates the total number of
bytesin the entire list.

dwCurrentLocationlD The dwPermanentL ocationID member from the
LINELOCATIONENTRY structure for the CurrentL ocation.
dwNumCards The number of entriesin the CardList.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Line Device Structures

Members Values
dwCardListSize List of calling cards that are known to the address transl ation.
dwCardListOffset It includes only non-hidden card entries and always includes

card O (direct dial). The list comprises a sequence of
LINECARDENTRY structures. ThedwCardL istOff set member
points to the first byte of the first LINECARDENTRY
structure, and the dwCardListSize member indicates the total
number of bytesin the entire list.

dwCurrentPreferredCardl D The dwPreferredCardlD member from the
LINELOCATIONENTRY structure for the CurrentL ocation.

LINETRANSLATEOUTPUT

Description

The LINETRANSLATEOUTPUT structure describes the result of an address translation. The
lineTranslateAddress function uses this structure.

~

Note You must not extend this structure.

Structure Details

typedef struct linetranslateoutput tag
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwDialableStringSize;
DWORD dwDialableStringOffset;
DWORD dwDisplayableStringSize;
DWORD dwDisplayableStringOffset;
DWORD dwCurrentCountry;
DWORD dwDestCountry;
DWORD dwTranslateResults;
} LINETRANSLATEOUTPUT, FAR *LPLINETRANSLATEOUTPUT;

Members Values

dwTotalSize The total size, in bytes, that is allocated to this data structure.

dwNeededSize The size, in bytes, for this data structure that is needed to hold
all the returned information.

dwUsedSize The size, in bytes, of the portion of this data structure that
contains useful information.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Line Device Structures

Members

Values

dwDialableStringSize
dwDial ableStringOffset

Contains the translated output that can be passed to the
lineMakeCall, lineDial, or other function that requires a
dialable string. The output always comprises a null-terminated
string (NULL getsincluded in the count in
dwDialableStringSize). This output string includes ancillary
fields such as name and subaddress if they were in the input
string. This string may contain private information such as
calling card numbers. To prevent inadvertent visibility to
unauthorized persons, it should not display to the user.

dwDisplayableStringSize
dwDisplayableStringOffset

Contains the translated output that can display to the user for
confirmation. Identical to DialableString, except the “friendly
name” of the card enclosed within bracket characters (for
example, “[AT&T Card]”) replaces calling card digits. The
ancillary fields, such as name and subaddress, get removed.
You can display this string in call-status dialog boxes without
exposing private information to unauthorized persons. You can
also include thisinformation in call logs.

dwCurrentCountry Contains the country code that is configured in
CurrentLocation. Use this value to control the display by the
application of certain user interface elements for local call
progress tone detection and for other purposes.

dwDestCountry Contains the destination country code of the translated address.

This value may pass to the dwCountryCode parameter of
lineM akeCall and other dialing functions (so the call progress
tones of the destination country or region such as a busy signal
are properly detected). Thisfield gets set to zero if the
destination addressthat is passed to lineTranslateA ddress is not
in canonical format.

dwTransl ateResults

Indicates the information that is derived from the translation
process, which may assist the application in presenting
user-interface elements. This field uses one
LINETRANSLATERESULT _.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Phone Functions W

TAPI Phone Functions

TAPI phone functions enable an application to control physical aspects of a phone

Table 3-4 TAPI Phone Functions

TAPI Phone Functions
phoneCallbackFunc
phoneClose

phoneDev Specific

phoneGetDevCaps

phoneGetDisplay

phoneGetLamp

phoneGetM essage

phoneGetRing
phoneGetStatus

phoneGetStatusM essages

phonelnitialize

phonel nitializeEx

phoneNegotiateAPlVersion

phoneOpen

phoneSetDisplay

phoneSetL amp

phoneSetStatusM essages

phoneShutdown

phoneCallbackFunc

Description

The phoneCallbackFunc function provides a placeholder for the application-supplied function name.

All callbacks occur in the application context. The callback function must reside in a dynamic-link
library (DLL) or application module and be exported in the modul e-definition file.

Function Details

VOID FAR PASCAL phoneCallbackFunc (
HANDLE hDevice,
DWORD dwMsg,
DWORD dwCallbackInstance,
DWORD dwParaml,
DWORD dwParam2,
DWORD dwParam3

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Phone Functions

Parameters

hDevice

A handle to a phone device that is associated with the callback.
dwMsg

A line or call device message.
dwCallbacklnstance

Callback instance data passed to the application in the callback. TAPI does not interpret this
DWORD.

dwParaml

A parameter for the message.
dwParam?2

A parameter for the message.
dwParam3

A parameter for the message.

Further Details

For more information about the parameters that are passed to this callback function, see “ TAPI Line
Messages” and “TAPI Phone Messages.”

phoneClose

Description

The phoneClose function closes the specified open phone device.

Function Details

LONG phoneClose (
HPHONE hPhone
)

Parameter

hPhone

A handle to the open phone device that isto be closed. If the function succeeds, the handle is no
longer valid.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Phone Functions W

phoneDevSpecific

Description

The phoneDev Specific function gets used as a general extension mechanism to enable a Telephony API
implementation to provide features that are not described in the other TAPI functions. The meanings of
these extensions are device specific.

When used with the Cisco Unified TSP, phoneDevSpecific can be used to send device specific datato a
phone device.

Function Details

LONG WINAPI phoneDevSpecific (
HPHONE hPhone,
LPVOID lpParams,
DWORD dwSize

Parameter

hPhone
A handle to a phone device.
[pParams

A pointer to amemory area used to hold a parameter block. Itsinterpretation is device specific. The
contents of the parameter block are passed unchanged to or from the service provider by TAPI.

dwSize

The size in bytes of the parameter block area.

phoneGetDevCaps

Description

The phoneGetDevCaps function queries a specified phone device to determineitstel ephony capabilities.

Function Details

LONG phoneGetDevCaps (
HPHONEAPP hPhoneApp,
DWORD dwDevicelD,

DWORD dwAPIVersion,
DWORD dwExtVersion,
LPPHONECAPS lpPhoneCaps

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Phone Functions

Parameters

hPhoneA pp

The handle to the registration with TAPI for this application.
dwDevicelD

The phone device that is to be queried.
dwAPIVersion

Theversion number of the Telephony API that is to be used. The high-order word contains the major
version number; the low-order word contains the minor version number. This number is obtained
with the function phoneNegotiateA Pl Version.

dwEXxtVersion

The version number of the service provider-specific extensions to be used. This number is obtained
with the function phoneNegotiateExtVersion. It can be |eft zero if no device-specific extensions are
to be used. Otherwise, the high-order word contains the major version number; the low-order word
contai ns the minor version number.

IpPhoneCaps

A pointer to a variably sized structure of type PHONECAPS. Upon successful completion of the
request, this structure is filled with phone device capabilities information.

phoneGetDisplay

Description

The phoneGetDisplay function returns the current contents of the specified phone display.

Function Details

LONG phoneGetDisplay (
HPHONE hPhone,
LPVARSTRING lpDisplay

)i

Parameters

hPhone
A handle to the open phone device.
IpDisplay
A pointer to the memory location where the display content is to be stored, of type VARSTRING.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3

Cisco Unified TAPI Implementation

phoneGetLamp

Description

Function Details

~

Note

Parameters

Note

TAPI Phone Functions W

The phoneGetL amp function returns the current lamp mode of the specified lamp.

This function is not supported on Cisco 79xx |P Phones.

LONG phoneGetLamp (
HPHONE hPhone,
DWORD dwButtonLampID,
LPDWORD lpdwLampMode

)i

hPhone

A handle to the open phone device.

dwButtonLampl D

Theidentifier of the lamp that isto be queried. See Table 3-7, “Phone Button Values” for lamp IDs.

[pdwL ampM ode

This function is not supported on Cisco 79xx |P Phones.

A pointer to a memory location that holds the lamp mode status of the given lamp. The
IpdwL ampM ode parameter can have at most one bit set. This parameter uses the following
PHONELAMPMODE _ constants:

PHONELAMPMODE_FLASH - Flash means slow on and off.
PHONELAMPMODE_FLUTTER - Flutter means fast on and off.
PHONELAMPMODE_OFF - The lamp is off.
PHONELAMPMODE_STEADY - The lamp is continuously lit.
PHONELAMPMODE_WINK - The lamp is winking.
PHONELAMPMODE_UNKNOWN - The lamp mode is currently unknown.

PHONELAMPMODE_DUMMY - Use thisvalueto describe a button/lamp position that has no
corresponding lamp.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Phone Functions

phoneGetMessage

Description

The phoneGetM essage function returns the next TAPI message that is queued for delivery to an
application that is using the Event Handle notification mechanism (see phonelnitializeEx for further
details).

Function Details

LONG WINAPI phoneGetMessage (
HPHONEAPP hPhoneApp,
LPPHONEMESSAGE lpMessage,
DWORD dwTimeout

Parameters

hPhoneApp

The handle that phonelnitializeEx returns. The application must have set the
PHONEINITIALIZEEXOPTION_USEEVENT option in the dwOptions member of the
PHONEINITIALIZEEXPARAMS structure.

IpM essage

A pointer to aPHONEM ESSAGE structure. Upon successful return from this function, the structure
contai ns the next message that had been queued for delivery to the application.

dwTimeout

The time-out interval, in milliseconds. The function returns if the interval elapses, even if no
message can be returned. If dwTimeout is zero, the function checks for a queued message and
returns immediately. If dwTimeout is INFINITE, the time-out interval never elapses.

Return Values
Returns zero if the request succeeds or anegative error number if an error occurs. Possible return values
follow:

PHONEERR_INVALAPPHANDLE, PHONEERR_OPERATIONFAILED,
PHONEERR_INVALPOINTER, PHONEERR_NOMEM.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Phone Functions W

phoneGetRing

Description

Function Details

Parameters

The phoneGetRing function enables an application to query the specified open phone device asto its
current ring mode.

LONG phoneGetRing(
HPHONE hPhone,
LPDWORD lpdwRingMode,
LPDWORD lpdwVolume

)

hPhone
A handle to the open phone device.
IpdwRingM ode
The ringing pattern with which the phone is ringing. Zero indicates that the phone is not ringing.
The system supports four ring modes.
Table 3-5 lists the valid ring modes.

Table 3-5 Ring Modes

Ring Modes Definition

0 Off

Inside Ring

1
2 Outside Ring
3 Feature Ring

[pdwVolume

Thevolumelevel with which the phoneisringing. This parameter has no meaning, the value 0x8000
always gets returned.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Phone Functions

phoneGetStatus

Description

The phoneGetStatus function enables an application to query the specified open phone device for its
overall status.

Function Details

LONG WINAPI phoneGetStatusMessages (
HPHONE hPhone,
LPPHONESTATUS lpPhoneStatus
)

Parameters
hPhone
A handle to the open phone device to be queried.
IpPhoneStatus
A pointer to a variably sized data structure of type PHONESTATUS, which is loaded with the
returned information about the phone's status.
Return Values

Returns zero if the request succeeds or anegative error number if an error occurs. Return values include
the following:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM PHONEERR_INVALPOINTER,
PHONEERR_RESOURCEUNAVAIL PHONEERR_OPERATIONFAILED,
PHONEERR_STRUCTURETOOSMALL PHONEERR_OPERATIONUNAVAIL,
PHONEERR_UNINITIALIZED

phoneGetStatusMessages

Description

The phoneGetStatusM essages function returns which phone-state changes on the specified phone device
generate a callback to the application.

An application can use phoneGetStatusM essages to query the generation of the corresponding messages.
The phoneSetStatusM essages can control Message generation. All phone status messages remain
disabled by default.

Function Details

LONG WINAPI phoneGetStatusMessages (
HPHONE hPhone,
LPDWORD lpdwPhoneStates,
LPDWORD lpdwButtonModes,
LPDWORD lpdwButtonStates
)

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Parameters

hPhone

A handle to the open phone device that is to be monitored.

IpdwPhoneStates

A pointer to a DWORD holding zero, one or more of the PHONESTATE__ Constants. These flags
specify the set of phone status changes and events for which the application can receive notification
messages. Monitoring can be individually enabled and disabled for the following:

PHONESTATE_OTHER
PHONESTATE_CONNECTED
PHONESTATE_DISCONNECTED
PHONESTATE_OWNER
PHONESTATE_MONITORS
PHONESTATE_DISPLAY
PHONESTATE_LAMP
PHONESTATE_RINGMODE
PHONESTATE_RINGVOLUME
PHONESTATE_HANDSETHOOKSWITCH
PHONESTATE_HANDSETVOLUME
PHONESTATE_HANDSETGAIN
PHONESTATE_SPEAKERHOOKSWITCH
PHONESTATE_SPEAKERVOLUME
PHONESTATE_SPEAKERGAIN
PHONESTATE_HEADSETHOOKSWITCH
PHONESTATE_HEADSETVOLUME
PHONESTATE_HEADSETGAIN
PHONESTATE_SUSPEND
PHONESTATE_RESUMEF
PHONESTATE_DEV SPECIFIC
PHONESTATE_REINIT
PHONESTATE_CAPSCHANGE
PHONESTATE_REMOVED

[pdwButtonM odes

TAPI Phone Functions W

A pointer to a DWORD that contains flags that specify the set of phone-button modes for which the
application can receive notification messages. This parameter uses zero, one or more of the
PHONEBUTTONMODE __ Constants.

[pdwButtonStates

A pointer to a DWORD that contains flags that specify the set of phone button state changes for
which the application can receive notification messages. This parameter uses zero, one or more of
the PHONEBUTTONSTATE__ Constants.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Phone Functions

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
are asfollows:

PHONEERR_INVALPHONEHANDLE
PHONEERR_NOMEM
PHONEERR_INVALPOINTER
PHONEERR_RESOURCEUNAVAIL
PHONEERR_OPERATIONFAILED
PHONEERR_UNINITIALIZED.

phonelnitialize

Description

Function Details

Parameters

Although the phonelnitialize function is obsolete, tapi.dil and tapi32.dll continues to export it for
backward compatibility with applications that are using TAPI versions 1.3 and 1.4.

LONG WINAPI phoneInitialize(
LPHPHONEAPP lphPhoneApp,
HINSTANCE hInstance,
PHONECALLBACK lpfnCallback,
LPCSTR lpszAppName,

LPDWORD lpdwNumDevs

IphPhoneApp

A pointer to a location that is filled with the application usage handle for TAPI.
hlnstance

The instance handle of the client application or DLL.
IpfnCallback

The address of a callback function that is invoked to determine status and events on the phone
device.

IpszAppName

A pointer to a null-terminated string that contains displayable characters. If this parameter is
non-NULL, it contains an application-supplied hame of the application. This name, which is
provided in the PHONESTATUS structure, indicates, in a user-friendly way, which application is
the current owner of the phone device. You can use thisinformation for logging and status reporting
purposes. If IpszAppNameis NULL, the application filename gets used instead.

[pdwNumDevs

A pointer to DWORD. Thislocation gets |oaded with the number of phone devicesthat are available
to the application.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter3 Cisco Unified TAPI Implementation

TAPI Phone Functions W

Return Values

Returns zero if the request succeeds or anegative error number if an error occurs. Possible return values

are asfollow:
PHONEERR_INVALAPPNAME
PHONEERR_INIFILECORRUPT
PHONEERR_INVALPOINTER
PHONEERR_NOMEM
PHONEERR_OPERATIONFAILED
PHONEERR_REINIT
PHONEERR_RESOURCEUNAVAIL
PHONEERR_NODEVICE
PHONEERR_NODRIVER
PHONEERR_INVALPARAM

phonelnitializeEx

Description

The phonel nitializeEx function initializes the application use of TAPI for subseguent use of the phone
abstraction. It registers the application specified notification mechanism and returns the number of
phone devices that are available to the application. A phone device represents any device that provides
an implementation for the phone-prefixed functions in the Telephony API.

Function Details

LONG WINAPI phoneInitializeEx(
LPHPHONEAPP lphPhoneApp,
HINSTANCE hInstance,
PHONECALLBACK lpfnCallback,
LPCSTR lpszFriendlyAppName,
LPDWORD lpdwNumDevs,
LPDWORD lpdwAPIVersion,
LPPHONEINITIALIZEEXPARAMS lpPhonelInitializeExParams

Parameters

IphPhoneApp
A pointer to a location that is filled with the application usage handle for TAPI.
hlnstance

The instance handle of the client application or DLL. The application or DLL can pass NULL for
this parameter, in which case TAPI uses the module handle of the root executable of the process.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Phone Functions

IpfnCallback

The address of a callback function that isinvoked to determine status and events on the line device,
addresses, or calls, when the application is using the "hidden window" method of event notification
(for more information see phoneCallbackFunc). When the application chooses to use the "event
handle" or "completion port" event notification mechanisms, this parameter getsignored and should
be set to NULL.

IpszFriendlyAppName

A pointer to a null-terminated string that contains only displayable characters. If this parameter is
not NULL, it contains an application-supplied name for the application. This name, which is
provided in the PHONESTATUS structure, indicates, in a user-friendly way, which application has
ownership of the phone device. If IpszFriendlyAppNameis NULL, the application module filename
gets used instead (as returned by the Windows function GetM odul eFileName).

[pdwNumDevs

A pointer to a DWORD. Upon successful completion of this request, the number of phone devices
that are available to the application fills this location.

[pdwA PIVersion

A pointer to aDWORD. The application must initialize this DWORD, before calling this function,
to the highest API version that it is designed to support (for example, the same value that it would
pass into dwAPIHighVersion parameter of phoneNegotiateAPIVersion). Do no use artificially high
values; ensure the values are accurately set. TAPI translates any newer messages or structures into
values or formats that the application version supports. Upon successful completion of this request,
the highest API version that is supported by TAPI fills this location, thereby allowing the

application to detect and adapt to having been installed on a system with an older version of TAPI.

[pPhonel nitializeExParams

Return Values

A pointer to a structure of type PHONEINITIALIZEEXPARAMS that contains additional
parametersthat are used to establish the association between the application and TAPI (specifically,
the application selected event notification mechanism and associated parameters).

Returns zero if the request succeeds or anegative error number if an error occurs. Possible return values
areasfollows:

PHONEERR_INVALAPPNAME
PHONEERR_OPERATIONFAILED
PHONEERR_INIFILECORRUPT
PHONEERR_INVALPOINTER
PHONEERR_REINIT
PHONEERR_NOMEM
PHONEERR_INVALPARAM

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Phone Functions W

phoneNegotiateAPIVersion

Description

Function Details

Use the phoneNegotiateA PlIVersion function to negotiate the API version number to be used with the
specified phone device. It returns the extension identifier that the phone device supports, or zeros if no
extensions are provided.

LONG WINAPI phoneNegotiateAPIVersion (
HPHONEAPP hPhoneApp,
DWORD dwDevicelD,
DWORD dwAPILowVersion,
DWORD dwAPIHighVersion,
LPDWORD lpdwAPIVersion,
LPPHONEEXTENSIONID lpExtensionID

Parameters
hPhoneApp
The handle to the application registration with TAPI.
dwDevicelD
The phone device to be queried.
dwAPILowVersion
The least recent API version with which the application is compliant. The high-order word
represents the major version number, and the low-order word represents the minor version number.
dwAPIHighVersion
The most recent API version with which the application is compliant. The high-order word
represents the major version number, and the low-order word represents the minor version number.
[pdwA PIVersion
A pointer to a DWORD in which the API version number that was negotiated will be returned. If
negotiation succeeds, this number ranges from dwAPILowVersion to dwAPIHighVersion.
IpExtensionl D
A pointer to a structure of type PHONEEXTENSIONID. If the service provider for the specified
dwDevicel D parameter supports provider-specific extensions, this structure gets filled with the
extension identifier of these extensions when negotiation succeeds. This structure contains all zeros
if the line provides no extensions. An application can ignore the returned parameter if it does not
use extensions.
Return Values
Returns zero if the request succeeds or anegative error number if an error occurs. Possible return values
areasfollows:
PHONEERR_INVALAPPHANDLE
PHONEERR_OPERATIONFAILED
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-94a2-m .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Phone Functions

phoneOpen

Description

Function Details

Parameters

PHONEERR_BADDEVICEID

PHONEERR_OPERATIONUNAVAIL

PHONEERR_NODRIVER

PHONEERR_NOMEM

PHONEERR_INVALPOINTER
PHONEERR_RESOURCEUNAVAIL,PHONEERR_INCOMPATIBLEAPIVERSION
PHONEERR_UNINITIALIZED

PHONEERR_NODEVICE

The phoneOpen function opens the specified phone device. The device can be opened by using either
owner privilege or monitor privilege. An application that opens the phone with owner privilege can
control the lamps, display, ringer, and hookswitch or hookswitches that belong to the phone. An
application that opens the phone device with monitor privilege receives notification only about events
that occur at the phone, such as hookswitch changes or button presses. Because ownership of a phone
deviceis exclusive, only one application at atime can have aphone device opened with owner privilege.
The phone device can, however, be opened multiple times with monitor privilege.

S

Note To open aphone device on a CTI port, first ensure a corresponding line device is open.

LONG phoneOpen (
HPHONEAPP hPhoneApp,
DWORD dwDevicelD,
LPHPHONE lphPhone,
DWORD dwAPIVersion,
DWORD dwExtVersion,
DWORD dwCallbackInstance,
DWORD dwPrivilege

hPhoneApp

A handle by which the application is registered with TAPI.
dwDevicelD

The phone device to be opened.
IphPhone

A pointer to an HPHONE handle that identifies the open phone device. Use this handle to identify
the device when invoking other phone control functions.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Phone Functions W

dwAPIVersion

The API version number under which the application and Telephony API agreed to operate. Obtain
this number from phoneNegotiateA Pl Version.

dwEXxtVersion

The extension version number under which the application and the service provider agree to operate.
This number is zero if the application does not use any extensions. Obtain this number from
phoneNegotiateExtVersion.

N

Note The Cisco Unified TSP does not support any phone extensions.

dwCallbacklInstance

User instance data passed back to the application with each message. The Telephony API does not
interpret this parameter.

dwPrivilege
The privilege requested. The dwPrivilege parameter can have only one bit set. This parameter uses
the following PHONEPRIVILEGE_ constants:

— PHONEPRIVILEGE_MONITOR - An application that opensaphone device with thisprivilege
gets informed about events and state changes occurring on the phone. The application cannot
invoke any operations on the phone device that would change its state.

- PHONEPRIVILEGE_OWNER - An application that opens a phone device in this mode can
change the state of the lamps, ringer, display, and hookswitch devices of the phone. Having
owner privilege to a phone device automatically includes monitor privilege as well.

phoneSetDisplay

Description

~

Note

Function Details

The phoneSetDisplay function causes the specified string to display on the specified open phone device.

Prior to Release 4.0, Cisco Unified CallManager messages that were passed to the phone would
automatically overwrite any messages sent to the phone using phoneSetDisplay(). In

Cisco Unified CallManager 4.0, the message sent to the phone in the phoneSetDisplay() APl will remain
on the phone until the phone is rebooted. If the application wants to clear the text from the display and
see the Cisco Unified CallManager messages again, aNULL string, not spaces, should be passed in the
phoneSetDisplay() API. In other words, the IpsDisplay parameter should be NULL and the dwSize
should be set to 0.

LONG phoneSetDisplay (
HPHONE hPhone,
DWORD dwRow,

DWORD dwColumn,
LPCSTR lpsDisplay,
DWORD dwSize

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Phone Functions

Parameters
hPhone
A handle to the open phone device. The application must be the owner of the phone.
dwRow
The row position on the display where the new text displays.
dwColumn
The column position on the display where the new text displays.
IpsDisplay
A pointer to the memory location where the display content is stored. The display information must
have the format that is specified in the dwStringFormat member of the device capabilities for this
phone.
dwSize
The size in bytes of the information to which IpsDisplay points.
phoneSetLamp
Description

Function Details

Parameters

Note

The phoneSetLamp function causes the specified lamp to be lit on the specified open phone devicein
the specified lamp mode.

LONG phoneSetLamp (
HPHONE hPhone,
DWORD dwButtonLampID,
DWORD dwLampMode

)i

hPhone

A handle to the open phone device. Ensure that the application is the owner of the phone.
dwButtonLampl D

The button whose lamp is to be illuminated. See “ Phone Button Values’ Table 3-7 for lamp IDs.
dwL ampMode

This function is not supported on Cisco 79xx |P Phones.

How thelamp isto beilluminated. The dwLampMode parameter can have only asingle bit set. This
parameter uses the following PHONELAMPMODE_ constants:

- PHONELAMPMODE_FLASH - Flash means slow on and off.
- PHONELAMPMODE_FLUTTER - Flutter means fast on and off.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Phone Functions W

- PHONELAMPMODE_OFF - The lamp is off.
- PHONELAMPMODE_STEADY - The lamp is continuously on.
- PHONELAMPMODE_WINK - The lamp is winking.

- PHONELAMPMODE_DUMMY - This value describes a button/lamp position that has no
corresponding lamp.

phoneSetStatusMessages

Description
The phoneSet StatusM essages function enables an application to monitor the specified phone device for
selected status events.

See “TAPI Phone Messages” for supported messages.

Function Details

LONG phoneSetStatusMessages (
HPHONE hPhone,
DWORD dwPhoneStates,
DWORD dwButtonModes,
DWORD dwButtonStates

Parameters

hPhone
A handle to the open phone device to be monitored.
dwPhoneStates

These flags specify the set of phone status changes and events for which the application can receive
notification messages. This parameter can have zero, one, or more bits set. This parameter uses the
following PHONESTATE_ constants:

— PHONESTATE_OTHER - Phone status items other than those listed below changed. The
application should check the current phone status to determine which items have changed.

— PHONESTATE_OWNER - The number of owners for the phone device changed.

— PHONESTATE_MONITORS - The number of monitors for the phone device changed.
— PHONESTATE_DISPLAY - The display of the phone changed.

— PHONESTATE_LAMP - A lamp of the phone changed.

— PHONESTATE_RINGMODE - The ring mode of the phone changed.

— PHONESTATE_SPEAKERHOOKSWITCH - The hookswitch state changed for this
speakerphone.

— PHONESTATE_REINIT - Items changed in the configuration of phone devices. To become
aware of these changes (as with the appearance of new phone devices) the application should
reinitialize its use of TAPI. New phonelnitialize, phonelnitializeEx, and phoneOpen requests
get denied until applications have shut down their usage of TAPI. The hDevice parameter of the
PHONE_STATE message stays NULL for this state change because it appliesto any line in the

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Phone Functions

system. Because of the critical nature of PHONESTATE_REINIT, such messages cannot be
masked, so the setting of this bit gets ignored and the messages always get delivered to the
application.

- PHONESTATE_REMOVED - Indicates that the service provider is removing the device from
the system by the service provider (most likely through user action, through a control panel or
similar utility). A PHONE_CL OSE message on the device immediately follows a
PHONE_STATE message with this value. Subsequent attempts to access the device prior to
TAPI being reinitialized result in PHONEERR_NODEV ICE being returned to the application.
If a service provider sends a PHONE_STATE message that contains this value to TAPI, TAPI
passes it along to applications that have negotiated TAPI version 1.4 or later; applications that
negotiated a previous TAPI version do not receive any notification.

dwButtonM odes

The set of phone-button modes for which the application can receive notification messages. This
parameter can have zero, one, or more bits set. This parameter uses the following
PHONEBUTTONMODE __ constants:

- PHONEBUTTONMODE_CALL - The button is assigned to a call appearance.

- PHONEBUTTONMODE_FEATURE - The button is assigned to requesting features from the
switch, such as hold, conference, and transfer.

- PHONEBUTTONMODE_KEY PAD - The button is one of the twelve keypad buttons, ‘O’
through ‘9, “*’, and ‘#'.

- PHONEBUTTONMODE_DISPLAY - The button is a“soft” button associated with the phone
display. A phone set can have zero or more display buttons.

dwButtonStates

The set of phone-button state changes for which the application can receive notification messages.
If the dwButtonM odes parameter is zero, the system ignores dwButtonStates. If dwButtonM odes
has one or more bits set, this parameter also must have at least one bit set. This parameter uses the
following PHONEBUTTONSTATE_ constants:

— PHONEBUTTONSTATE_UP - The button isin the “up” state.
— PHONEBUTTONSTATE_DOWN - The button isin the “down” state (pressed down).

— PHONEBUTTONSTATE_UNKNOWN - The up or down state of the button is not known at
this time but may become known at a future time.

— PHONEBUTTONSTATE_UNAVAIL - The service provider does not know the up or down
state of the button, and the state will not become known.

phoneShutdown

Description

The phoneShutdown function shuts down the application usage of the TAPI phone abstraction.

S

Note If thisfunction is called when the application has open phone devices, these devices are closed.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Phone Messages Il

Function Details

LONG WINAPI phoneShutdown (
HPHONEAPP hPhoneApp
)i

Parameter

hPhoneApp
The application usage handle for TAPI.

Return Values
Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

PHONEERR_INVALAPPHANDLE, PHONEERR_NOMEM, PHONEERR_UNINITIALIZED,
PHONEERR_RESOURCEUNAVAIL.

TAPI Phone Messages

M essages notify the application of asynchronous events. All messages get sent to the application through
the message notification mechanism that the application specified in linelnitializeEx. The message
always contains a handle to the relevant object (phone, line, or call), of which the application can
determine the type from the message type.

Table 3-6 TAPI Phone Messages

TAPI Phone Messages
PHONE_BUTTON
PHONE_CLOSE
PHONE_CREATE
PHONE_REMOVE
PHONE_REPLY
PHONE_STATE

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

I TAPIPhone Messages

PHONE_BUTTON

Description

The PHONE_BUTTON message notifies the application that button press monitoring is enabled if it has
detected a button press on the local phone.

Function Details

PHONE BUTTON

hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) hCallback;
dwParaml = (DWORD) idButtonOrLamp;
dwParam2 = (DWORD) ButtonMode;

dwParam3 = (DWORD) ButtonState;

Parameters

hPhone

A handle to the phone device.
dwCallbacklnstance

The callback instance that is provided when opening the phone device for this application.
dwParaml

The button/lamp identifier of the button that was pressed. Button identifiers zero through 11 always
represent the KEY PAD buttons, with ‘0’ being button identifier zero, ‘1’ being button identifier 1

(and so on through button identifier 9), and with ‘*’ being button identifier 10, and ‘# being button
identifier 11. Find additional information about a button identifier with phoneGetDevCaps.

dwParam?2

The button mode of the button. The button mode for each button ID gets listed as “Phone Button
Values’.

The TAPI service provider cannot detect button down or button up state changes. To conform to the
TAPI specification, two messages get sent simulating a down state followed by an up state in
dwparam3.

This parameter uses the following PHONEBUTTONMODE_ constants:
- PHONEBUTTONMODE_CALL - The button is assigned to a call appearance.

- PHONEBUTTONMODE_FEATURE - The button is assigned to requesting features from the
switch, such as hold, conference, and transfer.

- PHONEBUTTONMODE_KEY PAD - The button is one of the twelve keypad buttons, ‘O’
through ‘9, “*’, and ‘#'.

- PHONEBUTTONMODE_DISPLAY - The button is a“soft” button that is associated with the
phone display. A phone set can have zero or more display buttons.
dwParam3

Specifies whether thisis a button-down event or a button-up event. This parameter uses the
following PHONEBUTTONSTATE_ constants:

— PHONEBUTTONSTATE_UP - The button isin the “up” state.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3

Cisco Unified TAPI Implementation

TAPI Phone Messages Il

— PHONEBUTTONSTATE_DOWN - The button isin the “down” state (pressed down).

— PHONEBUTTONSTATE_UNKNOWN - The up or down state of the button is not known at
this time but may become known at a future time.

— PHONEBUTTONSTATE_UNAVAIL - The service provider does not know the up or down

state of the button, and the state cannot become known at a future time.

Button 1D values of zero through 11 map to the keypad buttons as defined by TAPI. Values above
11 map to line and feature buttons. The low order part of the DWORD specifies the feature. The
high-order part of the DWORD specifies the instance number of that feature. Table 3-7 lists al
possible values for the low order part of the DWORD corresponding to the feature.

The button ID can be made by the following expression:
Buttonl D = (instance << 16) | featurelD

Table 3-7 lists the valid phone button values.

Table 3-7 Phone Button Values

Has
Value Feature Instance |Button Mode
0 Keypad button 0 No Keypad
1 Keypad button 1 No Keypad
2 Keypad button 2 No Keypad
3 Keypad button 3 No Keypad
4 Keypad button 4 No Keypad
5 Keypad button 5 No Keypad
6 Keypad button 6 No Keypad
7 Keypad button 7 No Keypad
8 Keypad button 8 No Keypad
9 Keypad button 9 No Keypad
10 Keypad button **’ No Keypad
11 Keypad button ‘# No Keypad
12 Last Number Redial No Feature
13 Speed Dial Yes Feature
14 Hold No Feature
15 Transfer No Feature
16 Forward All (for line one) No Feature
17 Forward Busy (for line one) No Feature
18 Forward No Answer (for line one) No Feature
19 Display No Feature
20 Line Yes Call
21 Chat (for line one) No Feature
22 Whiteboard (for line one) No Feature
23 Application Sharing (for line one) No Feature

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

I TAPIPhone Messages

Table 3-7 Phone Button Values (continued)
Has

Value Feature Instance |Button Mode
24 T120 File Transfer (for line one) No Feature
25 Video (for line one) No Feature
26 Voice Mail (for line one) No Feature
27 Answer Release No Feature
28 Auto-answer No Feature
44 Generic Custom Button 1 Yes Feature
45 Generic Custom Button 2 Yes Feature
46 Generic Custom Button 3 Yes Feature
a7 Generic Custom Button 4 Yes Feature
48 Generic Custom Button 5 Yes Feature

PHONE_CLOSE

Description

The PHONE_CL OSE message gets sent when an open phone deviceisforcibly closed as part of resource

reclamation. The device handle is no longer valid after this message is sent.

Function Details

PHONE CLOSE

hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) hCallback;
dwParaml = (DWORD) O0;
dwParam2 = (DWORD) O0;
dwParam3 = (DWORD) O0;

Parameters
hPhone

A handle to the open phone device that was closed. The handle is no longer valid after this message
is sent.

dwCallbacklnstance

The callback instance of the application that is provided on an open phone device.

dwParaml is not used.

dwParam?2 is not used.

dwParam3 is not used.

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter3 Cisco Unified TAPI Implementation

PHONE_CREATE

Description

Y

Note

Function Details

Parameters

TAPI Phone Messages Il

The PHONE_CREATE message gets sent to inform applications of the creation of a new phone device.

CTI Manager cluster support, extension mobility, change notification, and user addition to the directory

can generate PHONE_CREATE events.

PHONE CREATE

hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) O;
dwParaml = (DWORD) idDevice;
dwParam2 = (DWORD) O0;

dwParam3 = (DWORD) O;

hPhone is not used.
dwCallbacklnstance is not used.
dwParaml1
The dwDevicelD of the newly created device.
dwParam? is not used.
dwParam3 is not used.

PHONE_REMOVE

Description

Note

Function Details

The PHONE_REM OV E message gets sent to inform an application of the removal (deletion from the
system) of a phone device. Generally, this method does not get used for temporary removals, such as
extraction of PCMCIA devices, but only for permanent removals in which the device would no longer

be reported by the service provider, if TAPI were reinitialized.

CTI Manager cluster support, extension mobility, change notification, and user deletion from the

directory can generate PHONE_REMOVE events.

PHONE REMOVE

dwDevice = (DWORD) O;
dwCallbackInstance = (DWORD) O;
dwParaml = (DWORD) dwDevicelD;
dwParam2 = (DWORD) O0;
dwParam3 = (DWORD) O0;

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

I TAPIPhone Messages

Parameters

dwDevice isreserved. Set to zero.
dwCallbacklnstance is reserved. Set to zero.
dwParaml1

Identifier of the phone device that was removed.
dwParam? is reserved. Set to zero.
dwParam3 is reserved. Set to zero.

PHONE_REPLY

Description

The TAPI PHONE_REPLY message gets sent to an application to report the results of function call that
completed asynchronously.

Function Details

PHONE REPLY

hPhone = (HPHONE) O0;
dwCallbackInstance = (DWORD) hCallback;
dwParaml = (DWORD) idRequest;

dwParam2 (DWORD) Status;

dwParam3 (DWORD) O0;

Parameters

hPhone is not used.
dwCallbacklnstance

Returns the application callback instance.
dwParaml

The reguest identifier for which thisisthe reply.
dwParam?2

The success or error indication. The application should cast this parameter into aLONG. Zero
indicates success; a hegative number indicates an error.

dwParam3 is not used.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

PHONE_STATE

Description

Function Details

Parameters

TAPI Phone Messages Il

TAPI sends the PHONE_STATE message to an application whenever the status of a phone device
changes.

PHONE STATE

hPhone

= (HPHONE) hPhoneDevice;

dwCallbackInstance = (DWORD) hCallback;
dwParaml = (DWORD) PhoneState;
dwParam2 = (DWORD) PhoneStateDetails;

dwParam3

hPhone

(DWORD) O0;

A handle to the phone device.
dwCallbacklnstance

The callback instance that is provided when the phone device is opened for this application.

dwParam1

The phone state that changed. This parameter uses the following PHONESTATE_ constants:

PHONESTATE_OTHER - Phone-status items other than those listed below changed. The
application should check the current phone status to determine which items changed.

PHONESTATE_CONNECTED - The connection between the phone device and TAPI was just
made. This happens when TAPI isfirst invoked or when the wire that connects the phone to the
computer is plugged in while TAPI is active.

PHONESTATE_DISCONNECTED - The connection between the phone device and TAPI was
just broken. This happens when the wire that connects the phone set to the computer is
unplugged while TAPI is active.

PHONESTATE_OWNER - The number of owners for the phone device changed.
PHONESTATE_MONITORS - The number of monitors for the phone device changed.
PHONESTATE_DISPLAY - The display of the phone changed.

PHONESTATE_LAMP - A lamp of the phone changed.

PHONESTATE_RINGMODE - The ring mode of the phone changed.

PHONESTATE_ HANDSETHOOKSWITCH - The hookswitch state changed for this
speakerphone.

PHONESTATE_REINIT - Items changed in the configuration of phone devices. To become
aware of these changes (as with the appearance of new phone devices), the application should
reinitialize its use of TAPI. The hDevice parameter of the PHONE_STATE message stays
NULL for this state change as it applies to any of the phonesin the system.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

TAPI Phone Messages

- PHONESTATE_REMOVED - Indicates that the device is being removed from the system by
the service provider (most likely through user action, through a control panel or similar utility).
Normally, a PHONE_CL OSE message on the device immediately follows a PHONE_STATE
message with this value. Subsequent attempts to access the device prior to TAPI being
reinitialized result in PHONEERR_NODEVICE being returned to the application. If a service
provider sends a PHONE_STATE message that contains this value to TAPI, TAPI passes it
along to applications that have negotiated TAPI version 1.4 or later; applications that negotiated
aprevious API version do not receive any notification.

dwParam?2

Phone state-dependent information detailing the status change. This parameter does not used if
multiple flags are set in dwParam1 because multiple status items get changed. The application
should invoke phoneGetStatus to obtain a complete set of information.

Parameter dwparam2 can be one of PHONESTATE_LAMP, PHONESTATE _DISPLAY,
PHONESTATE_HANDSETHOOKSWITCH or PHONESTATE_RINGMODE. Because the

Cisco Unified TSP cannot differentiate among hook switches for handsets, headsets, or speaker, the
PHONESTATE_HANDSETHOOKSWITCH value will always get used for hook switches.

If dwparam2 is PHONESTATE_LAMP, dwparam2 will be the button ID that is defined as in the
PHONE_BUTTON message.

If dwParaml is PHONESTATE_OWNER, dwParam2 contains the new number of owners.
If dwParaml is PHONESTATE_MONITORS, dwParam2 contains the new number of monitors.

If dwParaml is PHONESTATE_L AMP, dwParam2 contains the button/lamp identifier of the lamp
that changed.

If dwParaml is PHONESTATE_RINGMODE, dwParam?2 contains the new ring mode.

If dwParaml is PHONESTATE_HANDSET, SPEAKER, or HEADSET, dwParam2 contains the
new hookswitch mode of that hookswitch device. This parameter uses the following
PHONEHOOKSWITCHMODE __ constants:

- PHONEHOOKSWITCHMODE_ONHOOK - The microphone and speaker both remain on
hook for this device.

— PHONEHOOKSWITCHMODE_MICSPEAKER - The microphone and speaker both remain
active for this device. The Cisco Unified TSP cannot distinguish among handsets, headsets, or
speakers, so this value gets sent when the device is off hook.

dwParam3

The TAPI specification specifies that dwparam3 is zero; however, the Cisco Unified TSP will send
the new lamp state to the application in dwparam3 to avoid the call to phoneGetLamp to obtain the
state when dwparam2 is PHONESTATE_LAMP.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Phone Structures Il

TAPI Phone Structures

PHONECAPS

Members

This section describes the TAPI Phone Structures supported by Cisco Unified TSP

Table 3-8 TAPI Phone Structures

TAPI Phone Structure
PHONECAPS
PHONEINITIALIZEEXPARAMS
PHONEMESSAGE
PHONESTATUS

VARSTRING

This section liststhe Cisco-set attributes for each member of the PHONECAPS structure. If the value of
a structure member is device, line, or call specific, the value for each condition is noted.

dwProviderInfoSize
dwProviderInfoOffset

"Cisco Unified TSPxxx.TSP: Cisco |P PBX Service Provider Ver. X.X(x.x)" where the text before
the colon specifies the file name of the TSP, and the text after "Ver. " specifies the version of the
TSP.

dwPhonelnfoSize
dwPhonel nf oOff set

"DeviceType:[type]" where type specifies the device type that is specified in the
Cisco Unified CallManager database.

dwPermanentPhonel D
dwPhoneNameSize
dwPhoneNameOff set

"Cisco Phone: [deviceName]" where deviceName specifies the name of the device in the
Cisco Unified CallManager database.

dwStringFormat
STRINGFORMAT_ASCI|I

dwPhoneStates
PHONESTATE_OWNER |
PHONESTATE_MONITORS |
PHONESTATE_DISPLAY | (Not set for CTI Route Points)
PHONESTATE_LAMP | (Not set for CTI Route Points)
PHONESTATE_RESUME |

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

TAPI Phone Structures

PHONESTATE_REINIT |
PHONESTATE_SUSPEND
dwHookSwitchDevs
PHONEHOOKSWITCHDEV_HANDSET (Not set for CTl Route Points)
dwHandsetHookSwitchM odes
PHONEHOOKSWITCHMODE_ONHOOK | (Not set for CTI Route Points)
PHONEHOOKSWITCHMODE_MICSPEAKER | (Not set for CTI Route Points)
PHONEHOOKSWITCHMODE_UNKNOWN (Not set for CTI Route Points)
dwDisplayNumRows (Not set for CTI Route Points)
1
dwDisplayNumColumns
20 (Not set for CTI Route Points)
dwNumRingModes
3 (Not set for CTI Route Points)
dwPhoneFeatures (Not set for CTl Route Points)
PHONEFEATURE_GETDISPLAY |
PHONEFEATURE_GETLAMP |
PHONEFEATURE_GETRING |
PHONEFEATURE_SETDISPLAY |
PHONEFEATURE_SETLAMP
dwM onitoredHandsetH ook SwitchModes
PHONEHOOKSWITCHMODE_ONHOOK | (Not set for CTI Route Points)
PHONEHOOKSWITCHMODE_MICSPEAKER (Not set for CTI Route Points)

PHONEINITIALIZEEXPARAMS

Description

Structure Details

The PHONEINITIALIZEEXPARAMS structure contains parameters that are used to establish the
association between an application and TAPI; for example, the application selected event notification
mechanism. The phonelnitializeEx function uses this structure.

typedef struct phoneinitializeexparams tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwOptions;
union
{
HANDLE hEvent;
HANDLE hCompletionPort;

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Phone Structures Il

} Handles;
DWORD dwCompletionKey;
} PHONEINITIALIZEEXPARAMS, FAR *LPPHONEINITIALIZEEXPARAMS;

Members

dwTotalSize

Thetotal size, in bytes, that is allocated to this data structure.
dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned information.
dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful information.
dwOptions

One of the PHONEINITIALIZEEXOPTION_ Constants. Specifies the event notification
mechanism that the application desires to use.

hEvent

If dwOptions specifies PHONEINITIALIZEEXOPTION_USEEVENT, TAPI returns the event
handle in this member.

hCompl etionPort

If dwOptions specifies PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT, the
application must specify in this member the handle of an existing completion port that is opened
using Createl oCompletionPort.

dwCompletionKey

If dwOptions specifies PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT, the
application must specify in this field a value that is returned through the IpCompl etionKey
parameter of GetQueuedCompletionStatus to identify the completion message as a tel ephony

message.
PHONEMESSAGE

Description

The PHONEMESSAGE structure contains the next message that is queued for delivery to the
application. The phoneGetMessage function returns the following structure.

Structure Details

typedef struct phonemessage tag
DWORD hbDevice;
DWORD dwMessagelD;
DWORD_PTR dwCallbackInstance;
DWORD PTR dwParaml;
DWORD PTR dwParam2;
DWORD PTR dwParam3;

} PHONEMESSAGE, FAR *LPPHONEMESSAGE;

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Phone Structures

Members

Further Details

hDevice

A handle to a phone device.
dwM essagel D

A phone message.
dwCallbacklnstance

Instance data that is passed back to the application, which the application specified in
phonelnitializeEx. This DWORD is not interpreted by TAPI.

dwParaml

A parameter for the message.
dwParam?2

A parameter for the message.
dwParam3

A parameter for the message.

For details on the parameter values that are passed in this structure, see “ TAPI Phone Messages.”

PHONESTATUS

Description

Note

Structure Details

The PHONESTATUS structure describes the current status of a phone device. The phoneGetStatus and
TSPI_phoneGetStatus functions return this structure.

Device-specific extensions should use the DevSpecific (dwDevSpecificSize and dwDev SpecificOff set)
variably sized area of this data structure.

The dwPhoneFeatures member is available only to applications that open the phone device with an API
version of 2.0 or later.

typedef struct phonestatus tag
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwStatusFlags;
DWORD dwNumOwners;
DWORD dwNumMonitors;
DWORD dwRingMode;
DWORD dwRingVolume;
DWORD dwHandsetHookSwitchMode;
DWORD dwHandsetVolume;
DWORD dwHandsetGain;

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Phone Structures Il

DWORD dwSpeakerHookSwitchMode;
DWORD dwSpeakerVolume;
DWORD dwSpeakerGain;
DWORD dwHeadsetHookSwitchMode;
DWORD dwHeadsetVolume;
DWORD dwHeadsetGain;
DWORD dwDisplaySize;
DWORD dwDisplayOffset;
DWORD dwLampModesSize;
DWORD dwLampModesOffset;
DWORD dwOwnerNameSize;
DWORD dwOwnerNameOffset;
DWORD dwDevSpecificSize;
DWORD dwDevSpecificOffset;
DWORD dwPhoneFeatures;
} PHONESTATUS, FAR *LPPHONESTATUS;

Members
dwTotalSize
Thetotal size, in bytes, allocated to this data structure.
dwNeededSize
The size, in bytes, for this data structure that is needed to hold all the returned information.
dwUsedSize
The size, in bytes, of the portion of this data structure that contains useful information.
dwStatusFlags
Provides a set of status flags for this phone device. This member uses one of the
PHONESTATUSFLAGS _Constants.
dwNumOwners
The number of application modules with owner privilege for the phone.
dwNumM onitors
The number of application modules with monitor privilege for the phone.
dwRingMode
The current ring mode of a phone device.
dwRingVolume
0x8000
dwHandsetHook SwitchM ode
The current hookswitch mode of the phone's handset. PHONEHOOK SWITCHMODE_UNKNOWN
dwHandsetVolume
0
dwHandsetGain
0
dwSpeakerHook SwitchM ode
The current hookswitch mode of the phone's speakerphone.
PHONEHOOKSWITCHMODE_UNKNOWN
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-94a2-m .m

Chapter3 Cisco Unified TAPI Implementation |

Il TAPI Phone Structures

dwSpeakerVolume
0
dwSpeakerGain
0
dwHeadsetHookSwitchM ode
The current hookswitch mode of the phone's headset. PHONEHOOK SWITCHMODE_UNKNOWN
dwHeadsetVolume
0
dwHeadsetGain
0
dwDisplaySize
dwDisplayOffset
0
dwL ampM odesSi ze
dwL ampM odesOff set
0
dwOwnerNameSize
dwOwnerNameOffset

The size, in bytes, of the variably sized field containing the name of the application that is the
current owner of the phone device, and the off set, in bytes, from the beginning of this datastructure.
The nameisthe application name provided by the application when it invoked with phonelnitialize
or phonel nitializeEx. If no application name was supplied, the application'sfilenameisused instead.
If the phone currently has no owner, dwOwnerNameSize is zero.

dwDevSpecificSize
dwDevSpecificOff set

Application can send X SI datato phone using DeviceDataPassThrough device specific extension.
Phone can pass back datato Application. Thedatais returned as part of thisfield. The format of the
datais asfollows:

struct PhoneDevSpecificData
{

DWORD m_DeviceDataSize ; // size of device data

DWORD m_DeviceDataOffset ; // offset from PHONESTATUS
structure

// this will follow the actual variable length device data.

}
dwPhoneFeatures

The application negotiates an extension version >= 0x00020000. The following features are supported:
¢ PHONEFEATURE_GETDISPLAY
¢ PHONEFEATURE_GETLAMP
¢ PHONEFEATURE_GETRING
¢ PHONEFEATURE_SETDISPLAY
¢ PHONEFEATURE_SETLAMP

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

TAPI Phone Structures Il

VARSTRING

Description

The VARSTRING structure returns variably sized strings. The line device class and the phone device
class both use it.

~

Note No extensibility exists with VARSTRING.

Structure Details

typedef struct varstring tag {
DWORD dwTotalSize;
DWORD dwNeededSize;
DWORD dwUsedSize;
DWORD dwStringFormat;
DWORD dwStringSize;
DWORD dwStringOffset;
} VARSTRING, FAR *LPVARSTRING;

Members

dwTotalSize

Thetotal size, in bytes, that is allocated to this data structure.
dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned information.
dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful information.
dwStringFormat

The format of the string. This member uses one of the STRINGFORMAT __ Constants.
dwStringSize
dwStringOffset

The size, in bytes, of the variably sized device field that contains the string information and the
offset, in bytes, from the beginning of this data structure.

If astring cannot be returned in avariable structure, the dwStringSize and dwStringOffset members
get set in one of the following ways:

dwStringSize and dwStringOffset members both get set to zero.
dwStringOffset gets set to nonzero and dwStringSize gets set to zero.

dwStringOffset gets set to nonzero, dwStringSize gets set to 1, and the byte at the given offset
gets set to zero.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter 3

Cisco Unified TAPI Implementation |

H Wwave

Wave

The AVAudio32.dll implements the Wave interfaces to the Cisco wave drivers. The system supports all

APIs for input and output waveform devices.

Table 3-9 WaveFunctions

Wave Functions

wavelnAddBuffer

wavelnClose

wavelnGetlD

wavel nGetPosition

wavelnOpen

wavel nPrepareHeader

wavel nReset

wavel nStart

wavel nUnprepareHeader

waveOutPrepareHeader

waveOutGetDevCaps

waveOutGetl D

waveOutGetPosition

waveOutOpen

waveOutPrepareHeader

waveOutReset

waveOutUnprepareHeader

waveOutWrite

wavelnAddBuffer

Description

Function Details

The wavelnAddBuffer function sends an input buffer to the given waveform-audio input device. When

the buffer is filled, the application receives notification.

MMRESULT waveInAddBuffer (
HWAVEIN hwi,
LPWAVEHDR pwh,
UINT cbwh

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter3 Cisco Unified TAPI Implementation

Wave H

Parameters
hwi
Handle of the waveform-audio input device.
pwh
Address of a WAV EHDR structure that identifies the buffer.
cbwh
Size, in bytes, of the WAVEHDR structure.
wavelnClose
Description

The wavelnClose function closes the given waveform-audio input device.

Function Details

MMRESULT waveInClose (
HWAVEIN hwi
)i

Parameter
hwi
Handl e of the waveform-audio input device. If the function succeeds, the handle no longer remains
valid after this call.
wavelnGetlD
Description

The wavelnGetID function gets the device identifier for the given waveform-audio input device.

This function gets supported for backward compatibility. New applications can cast a handle of the
device rather than retrieving the device identifier.

Function Details

MMRESULT waveInGetID (
HWAVEIN hwi,
LPUINT puDeviceID
)i

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

H Wawe
Parameters
hwi
Handle of the waveform-audio input device.
puDevicel D
Address of avariable to be filled with the device identifier.
wavelnGetPosition
Description

The wavel nGetPosition function retrieves the current input position of the given waveform-audio input
device.

Function Details

MMRESULT waveInGetPosition (
HWAVEIN hwi,
LPMMTIME pmmt,
UINT cbmmt

Parameters
hwi
Handl e of the waveform-audio input device.
pmmt
Address of the MMTIME structure.
cbmmt
Size, in bytes, of the MMTIME structure.
wavelnOpen
Description

The wavelnOpen function opens the given waveform-audio input device for recording.

Function Details

MMRESULT waveInOpen (
LPHWAVEIN phwi,
UINT uDevicelD,
LPWAVEFORMATEX pwfx,
DWORD dwCallback,
DWORD dwCallbackInstance,
DWORD fdwOpen

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Parameters

Wave H

phwi

Address that is filled with a handle that identifies the open waveform-audio input device. Use this
handle to identify the device when calling other waveform-audio input functions. This parameter
can be NULL if WAVE_FORMAT_QUERY is specified for fdwOpen.

uDevicelD

Identifier of the waveform-audio input device to open. It can be either a device identifier or ahandle
of an open waveform-audio input device. You can use the following flag instead of a device
identifier:

WAV E_MAPPER - The function selects awaveform-audio input device that is capable of recording
in the specified format.
pwfx

Address of a WAVEFORMATEX structure that identifies the desired format for recording
waveform-audio data. You can free this structure immediately after wavelnOpen returns.

S
Note The formats that the TAPI Wave Driver supports include a 16-bit PCM at 8000 Hz, 8-bit
mulaw at 8000 Hz, and 8-bit alaw at 8000 Hz.

dwCallback

Address of afixed callback function, an event handle, a handle to a window, or the identifier of a
thread to be called during waveform-audio recording to process messages that are related to the
progress of recording. If no callback function isrequired, this value can specify zero. For more
information on the callback function, see wavelnProc in the TAPI API.

dwCallbacklInstance

User-instance data that is passed to the callback mechanism. This parameter does not get used with
the window callback mechanism.

fdwOpen
Flags for opening the device. The following values definitions apply:
— CALLBACK_EVENT - The dwCallback parameter specifies an event handle.
— CALLBACK_FUNCTION - The dwCallback parameter specifies acallback procedure address.
— CALLBACK_NULL - No callback mechanism. This represents the default setting.
— CALLBACK_THREAD - The dwCallback parameter specifies a thread identifier.
— CALLBACK_WINDOW - The dwCallback parameter specifies awindow handle.

- WAVE_FORMAT_DIRECT - If thisflag is specified, the ACM driver does not perform
conversions on the audio data.

- WAVE_FORMAT_QUERY - The function queries the device to determine whether it supports
the given format, but it does not open the device.

- WAVE_MAPPED - The uDevicel D parameter specifies a waveform-audio device to which the
wave mapper maps.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter3 Cisco Unified TAPI Implementation |

H Wwave

wavelnPrepareHeader

Description

The wavelnPrepareHeader function prepares a buffer for waveform-audio input.

Function Details

MMRESULT wavelInPrepareHeader (
HWAVEIN hwi,
LPWAVEHDR pwh,

UINT cbwh
)i
Parameters
hwi
Handle of the waveform-audio input device.
pwh
Address of a WAV EHDR structure that identifies the buffer to be prepared.
cbwh
Size, in bytes, of the WAVEHDR structure.
wavelnReset
Description

The wavel nReset function stops input on the given waveform-audio input device and resets the current
position to zero. All pending buffers get marked as done and get returned to the application.
Function Details

MMRESULT waveInReset (
HWAVEIN hwi
)i

Parameter

hwi

Handl e of the waveform-audio input device.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Wave H

wavelnStart

Description

The wavelnStart function starts input on the given waveform-audio input device.

Function Details

MMRESULT waveInStart (
HWAVEIN hwi
)i

Parameter

hwi

Handl e of the waveform-audio input device.

wavelnUnprepareHeader

Description

Thewavel nUnprepareHeader function cleans up the preparation that the wavel nPrepareHeader function
performs. This function must be called after the device driver fills a buffer and returnsit to the
application. You must call this function before freeing the buffer.

Function Details

MMRESULT waveInUnprepareHeader (
HWAVEIN hwi,
LPWAVEHDR pwh,
UINT cbwh

)i

Parameters

hwi

Handle of the waveform-audio input device.
pwh

Address of a WAV EHDR structure that identifies the buffer to be cleaned up.
cbwh

Size, in bytes, of the WAVEHDR structure.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

H Wwave

waveOutClose

Description

The waveOutClose function closes the given waveform-audio output device.

Function Details

MMRESULT waveOutClose (
HWAVEOUT hwo
)i

Parameter
hwo
Handl e of the waveform-audio output device. If the function succeeds, the handle no longer remains
valid after this call.
waveOQutGetDevCaps
Description

The waveOutGetDevCaps function retrieves the capabilities of a given waveform-audio output device.

Function Details

MMRESULT waveOutGetDevCaps (
UINT uDevicelD,
LPWAVEOUTCAPS pwoc,

UINT cbwoc

)i

Parameters

uDevicelD

Identifier of the waveform-audio output device. It can be either a device identifier or a handle of an
open waveform-audio output device.

pwoc

Address of a WAVEOUTCAPS structure that is to be filled with information about the capabilities
of the device.

cbwoc
Size, in bytes, of the WAVEOUTCAPS structure.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Wave H

waveOutGetlD

Description

The waveOutGetID function retrieves the device identifier for the given waveform-audio output device.

This function gets supported for backward compatibility. New applications can cast a handle of the
device rather than retrieving the device identifier.

Function Details

MMRESULT waveOutGetID (
HWAVEOUT hwo,
LPUINT puDeviceID

)i

Parameters
hwo
Handl e of the waveform-audio output device.
puDevicel D
Address of avariable to be filled with the device identifier.
waveQutGetPosition
Description

The waveOutGetPosition function retrieves the current playback position of the given waveform-audio
output device.

Function Details

MMRESULT waveOutGetPosition (
HWAVEOUT hwo,
LPMMTIME pmmt,
UINT cbmmt

)i

Parameters

hwo

Handl e of the waveform-audio output device.
pmmt

Address of an MMTIME structure.
cbmmt

Size, in bytes, of the MMTIME structure.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

H Wwave

waveQOutOpen

Description

The waveOutOpen function opens the given waveform-audio output device for playback.

Function Details

MMRESULT waveOutOpen (
LPHWAVEOUT phwo,
UINT uDevicelD,
LPWAVEFORMATEX pwfx,
DWORD dwCallback,
DWORD dwCallbackInstance,
DWORD fdwOpen

Parameters

phwo

Address that is filled with a handle identifying the open waveform-audio output device. Use the
handle to identify the device when other waveform-audio output functions are called. This
parameter might be NULL if the WAVE_FORMAT_QUERY flag is specified for fdwOpen.

uDevicelD

Identifier of the waveform-audio output device to open. It can be either a device identifier or a
handle of an open waveform-audio input device. You can use the following flag instead of a device
identifier:

WAV E_MAPPER - The function selects a wavef orm-audio output device that is capable of playing
the given format.

pwfx

Address of a WAVEFORMATEX structure that identifies the format of the waveform-audio datato
be sent to the device. You can free this structure immediately after passing it to waveOutOpen.

~
Note = The formats that the TAPI Wave Driver supports include 16-bit PCM at 8000 Hz, 8-bit
mulaw at 8000 Hz, and 8-bit alaw at 8000 Hz.

dwCallback

Address of afixed callback function, an event handle, a handle to a window, or the identifier of a
thread to be called during waveform-audio playback to process messages that are related to the
progress of the playback. If no callback function is required, this value can specify zero. For more
information on the callback function, see waveOutProc in the TAPI API.

dwCallbacklnstance

User-instance data that is passed to the callback mechanism. This parameter does not get used with
the window callback mechanism.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Wave H

fdwOpen

Flags for opening the device. The following value definitions apply:

CALLBACK_EVENT - The dwCallback parameter represents an event handle.
CALLBACK_FUNCTION - The dwCallback parameter specifies acallback procedure address.
CALLBACK_NULL - No callback mechanism. This value specifies the default setting.
CALLBACK_THREAD - The dwCallback parameter represents a thread identifier.
CALLBACK_WINDOW - The dwCallback parameter specifies awindow handle.

WAVE_ALLOWSYNC - If thisflag is specified, a synchronous waveform-audio device can be
opened. If thisflag is not specified while a synchronous driver is opened, the device will fail to
open.

WAVE_FORMAT_DIRECT - If this flag is specified, the ACM driver does not perform
conversions on the audio data.

WAVE_FORMAT_QUERY - If this flag is specified, waveOutOpen queries the device to
determine whether it supports the given format, but the device does not actually open.

WAVE_MAPPED - If thisflag is specified, the uDevicel D parameter specifies a
waveform-audio device to which the wave mapper maps.

waveOQutPrepareHeader

Description

The waveOutPrepareHeader function prepares a waveform-audio data block for playback.

Function Details

MMRESULT waveOutPrepareHeader (
HWAVEOUT hwo,
LPWAVEHDR pwh,

UINT cbwh
)i
Parameters
hwo
Handle of the waveform-audio output device.
pwh
Address of a WAV EHDR structure that identifies the data block to be prepared.
cbwh
Size, in bytes, of the WAVEHDR structure.
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-94a2-m .m

Chapter3 Cisco Unified TAPI Implementation |

H Wwave

waveOutReset

Description

The waveOutReset function stops playback on the given waveform-audio output device and resets the
current position to zero. All pending playback buffers get marked as done and get returned to the
application.

Function Details

MMRESULT waveOutReset (
HWAVEOUT hwo
)i

Parameter

hwo

Handl e of the waveform-audio output device.

waveQutUnprepareHeader

Description

The waveOutUnprepareHeader function cleans up the preparation that the waveOUtPrepareHeader
function performs. Ensure this function is called after the device driver isfinished with adatablock. You
must call this function before freeing the buffer.

Function Details

MMRESULT waveOutUnprepareHeader (
HWAVEOUT hwo,
LPWAVEHDR pwh,
UINT cbwh

)i

Parameters

hwo

Handle of the waveform-audio output device.
pwh

Address of a WAV EHDR structure that identifies the data block to be cleaned up.
cbwh

Size, in bytes, of the WAVEHDR structure.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter3 Cisco Unified TAPI Implementation

Wave H

waveQutWrite

Description

The waveOutWrite function sends a data block to the given waveform-audio output device.

Function Details

MMRESULT waveOutWrite (
HWAVEOUT hwo,
LPWAVEHDR pwh,

UINT cbwh

Parameters

hwo

Handle of the waveform-audio output device.
pwh

Address of a WAV EHDR structure that contains information about the data bl ock.
cbwh

Size, in bytes, of the WAVEHDR structure.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter3 Cisco Unified TAPI Implementation |

H Wwave

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
m. oL-9442-01 |

CHAPTER I

Cisco Device Specific Extensions

This chapter describes the Cisco device-specific TAPI extensions. It describes how to invoke the Cisco
device-specific TAPI extensions with the lineDevSpecific function. It also describes a set of classes that
can be used when calling phoneDevSpecific.

Cisco Line Device Specific Extensions

CiscoLineDevSpecific, the CCiscoPhoneDevSpecific class, represents the parent class.

Table 4-1 lists the subclasses of Cisco Line Device Specific Extensions.

Table 4-1 Cisco-Specific TAPI functions

Cisco Functions

Synopsis

CCiscoLineDevSpecific

The CCiscoLineDevSpecific class specifies the parent class to the
following classes.

M essage Waiting

The CCiscoL ineDevSpecificM sgWaiting class turns the message
waiting lamp on or off for the line that the hLine parameter specifies.

Message Waiting Dirn

The CCiscoL ineDevSpecificM sgWaiting class turns the message
waiting lamp on or off for the line that a parameter and remains
independent of the hLine parameter specifies.

Audio Stream Control

The CCiscoLineDevSpecificUserControl RT PStream class controls the
audio stream for aline.

Set Status M essages

The CCiscoL ineDevSpecificSetStatusM sgs class controls the reporting
of certain line device specific messages for aline. The application
receives LINE_DEV SPECIFIC messages to signal when to stop and
start streaming RTP audio.

Swap-Hold/SetupTransfer

This is not supported in Cisco Unified TSP 4.0 and higher.

The CCiscoL ineDevSpecificSwapHoldSetupTransfer class performs a
setupTransfer between acall that isin CONNECTED state and a call
that isin ONHOLD state. This function will change the state of the
connected call to ONHOLDPENDTRANSFER state and the ONHOLD
call to CONNECTED state. This action will then allow a
completeTransfer to be performed on the two calls.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Cisco Device Specific Extensions |

|| Cisco Line Device Specific Extensions

Table 4-1

Cisco-Specific TAPI functions (continued)

Cisco Functions

Synopsis

Redirect Reset Original
Called ID

The CCiscoLineDevSpecificRedirectResetOrigCalled class gets used to
redirects a call to another party while resetting the original called ID of
the call to the destination of the redirect.

Port Registration per Call

The CciscoLineDevSpecificPortRegistrationPerCall class gets used to
register a CTI Port or route Point for the Dynamic Port Registration
feature, which allows applications to specify the |P address and UDP
port number on a call-by-call basis.

Setting RTP Parameters for
Call

The CciscoLineDevSpecificSetRTPParamsForCall class sets the IP
address and UDP port number for the specified call.

Redirect Set Original Called
ID

The CciscoLineDevSpecificSetOrigCalled class gets used to redirect a
call to another party while setting the original called 1D of thecall to any
other party.

Join

The CciscoLineDevSpecificJoin class getsused to jointwo or morecalls
into one conference call.

Set User SRTP Algorithm
IDs

The CciscoLineDevSpecificUserSetSRTPAIgorithmID classis used to
allow application to set SRTP algorithm IDs. Ths cilass should be used
after lineopen and before
CCiscoLineDevSpecificSetRTPParamsForCall or
CCiscoLineDevSpecificUserControl RTPStream

Explicit Acquire

The CciscoLineDevSpecificAcquire class is used to Explicitly acquire
any CTI Controllable devicein the Cisco Unified CallManager system,
which needs to be opened in Super Provider mode.

Explicit De-Acquire

The CciscoLineDevSpecificDeacquire class is used to Explicitly
De-acquire any CTI Controllable device in the
Cisco Unified CallManager system.

Redirect FAC CMC

The CCiscoLineDevSpecificRedirectFACCMC classis used to redirect
acall to another party while including a FAC, CMC, or both.

Blind Transfer FAC CMC

The CCiscoLineDevSpecificBlindTransferFACCMC class is used to
blind transfer a call to another party while including a FAC, CMC, or
both.

CTI Port Third Party
Monitor

The CCiscoLineDevSpecificCTIPortThirdPartyMonitor classisused to
open aCTlI port in third party mode.

Send Line Open

The CciscoLineDevSpecificSendLineOpen classis used to trigger
actual line open from TSP side. Thisis used for delayed open
mechanism.

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter4 Cisco Device Specific Extensions

Cisco Line Device Specific Extensions W

Structures

This section describes device-specific extensions that have been made to the TAPI structures that the
Cisco Unified TSP supports.

LINEDEVCAPS Device Specific Extensions

Description

The LineDevCaps_DevSpecificData structure describes the device-specific extensions that the
Cisco Unified TSP has made to the LINEDEV CAPS structure.

Detail

A

typedef struct LineDevCaps DevSpecificData

DWORD m_DevSpecificFlags;
}LINEDEVCAPS DEV_SPECIFIC_DATA;

Note Thisextension isonly available if extension version 3.0 (0x00030000) or higher is negotiated.

typedef struct LocalelInfo
{
DWORD Locale; //This will have the locale info of the device
DWORD PartitionOffset;
DWORD PartitionSize; //This will have the partition info of the line.
} LOCALE_INFO;

Note ThelLocaeinfoisonly available along with LINEDEVCAPS_DEV_SPECIFIC_DATA if extension
version 6.0 (0x00060000) or higher is negotiated.

c

typedef struct PartitionInfo

{

DWORD PartitionOffset;
DWORD PartitionSize; //This will have the partition info of the line.
} PARTITION INFO;

Note Both the L ocale and Partition Info is available along with LINEDEV CAPS _DEV_SPECIFIC_DATA if
extension version 6.1 (0x00060001) or higher is negotiated.

Parameters

DWORD m_DevSpecificFlags
A bit array that identifies device specific properties for the line. The bits definition follows:

LINEDEVCAPSDEV SPECIFIC_PARKDN (0x00000001)—Indicates whether thislineis a Call
Park DN.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter 4

Cisco Device Specific Extensions |

|| Cisco Line Device Specific Extensions

~

Note Thisextensionisonly available if extension version 3.0 (0x00030000) or higher is negotiated.

DWORD Locale

This identifies the locale information for the device. The typical values could be:

enum

{

ENGLISH UNITED STATES = 1,
FRENCH FRANCE = 2
GERMAN GERMANY
RUSSIAN RUSSIA
SPANTSH SPAIN = 6,

ITALIAN ITALY = 7,
DUTCH_NETHERLAND = 8,
NORWEGIAN NORWAY = 9,
PORTUGUESE_PORTUGAL = 10,
SWEDISH SWEDEN = 11,

DANISH DENMARK = 12,
JAPANESE_JAPAN = 13,

HUNGARTAN HUNGARY = 14,
POLISH_POLAND = 15,

GREEK GREECE = 16,

TRADITIONAL CHINESE CHINA = 19,
SIMPLIFIED CHINESE CHINA = 20,
KOREAN KOREA = 21

}

3,
5,

LINECALLINFO Device Specific Extensions

Description

Detail

The TSP_Unicode Party names structure and SRTP info structure describes the device specific
extensions that have been made to the LINECALLINFO structure by the Cisco Unified TSP.
DSCPValueForAudioCalls will contain the DSCP value sent by CTI in the StartTransmissionEvent.

ExtendedCallInfo structure will have extra call information. For this rel ease ExtendedCallReason field

will be part of the ExtendedCallInfo structure.

DWORD TapiCallerPartyUnicodeNameOffset;
DWORD TapiCallerPartyUnicodeNameSize;
DWORDTapiCallerPartyLocale;

DWORD TapiCalledPartyUnicodeNameOffset;
DWORD TapiCalledPartyUnicodeNameSize;
DWORDTapiCalledPartyLocale;

DWORD TapiConnectedPartyUnicodeNameOffset;
DWORD TapiConnectedPartyUnicodeNameSize;
DWORDTapiConnectedPartyLocale;

DWORD TapiRedirectionPartyUnicodeNameOffset;
DWORD TapiRedirectionPartyUnicodeNameSize;
DWORDTapiRedirectionPartyLocale;

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter4 Cisco Device Specific Extensions
Cisco Line Device Specific Extensions
DWORD TapiRedirectingPartyUnicodeNameOffset;
DWORD TapiRedirectingPartyUnicodeNameSize;
DWORDTapiRedirectingPartyLocale;
DWORD SRTPKeyInfoStructureOffset; // offset from base of LINECALLINFO
DWORD SRTPKeyInfoStructureSize;// includes variable length data total size
DWORD SRTPKeyInfoStructureElementCount;
DWORD SRTPKeyInfoStructureElementFixedSize;
DWORD DSCPValueInformationOffset;
DWORD DSCPValueInformationSize;
DWORD DSCPValueInformationElementCount;
DWORD DSCPValueInformationElementFixedSize;
DWORD PartitionInformationOffset; // offset from base of LINECALLINFO
DWORD PartitionInformationSize; // includes variable length data total size
DWORD PartitionInformationElementCount;
DWORD PartitionInformationElementFixedSize;
DWORD ExtendedCallInfoOffset;
DWORD ExtendedCallInfoSize;
DWORD ExtendedCallInfoElementCount;
DWORD ExtendedCallInfoElementSize;
typedef struct SRTPKeyInfoStructure
{
SRTPKeyInformation TransmissionSRTPInfo;
SRTPKeyInformation ReceptionSRTPInfo;
} SRTPKeyInfoStructure;
typedef struct SRTPKeyInformation
{
DWORD IsSRTPDataAvailable;
DWORD SecureMedialIndicator;// CiscoSecurityIndicator
DWORD MasterKeyOffset;
DWORD MasterKeySize;
DWORD MasterSaltOffset;
DWORD MasterSaltSize;
DWORD AlgorithmID; // CiscoSRTPAlgorithmIDs
DWORD IsMKIPresent;
DWORD KeyDerivationRate;
} SRTPKeyInformation;
enum CiscoSRTPAlgorithmIDs
{
SRTP_NO_ENCRYPTION=0,
SRTP_AES 128 COUNTER=1
i
enum CiscoSecurityIndicator
{
SRTP_MEDIA ENCRYPT_ KEYS AVAILABLE,
SRTP_MEDIA ENCRYPT USER NOT AUTH,
SRTP_MEDIA ENCRYPT_ KEYS UNAVAILABLE,
SRTP_MEDIA NOT ENCRYPTED
i
If isSRTPInfoavailable is set to false, the rest of the information from SRTPKeylInformation should be
ignored.
If MasterKeySize or MasterSlatSize is set to 0, then the corresponding MasterK ey Offset or
M asterSaltOffset should be ignored.
typedef struct DSCPValueInformation
{
DWORD DSCPValueForAudioCalls;
1
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01

Chapter 4

Cisco Device Specific Extensions |

|| Cisco Line Device Specific Extensions

typedef struct PartitionInformation

{

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

CallerIDPartitionOffset;
CallerIDPartitionSize;
CalledIDPartitionOffset;
CalledIDPartitionSize;
ConnecetedIDPartitionOffset;
ConnecetedIDPartitionSize;
RedirectionIDPartitionOffset;
RedirectionIDPartitionSize;
RedirectingIDPartitionOffset;
RedirectingIDPartitionSize;

} PartitionInformation;

Struct ExtendedCallInfo

{

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

ExtendedCallReason ;

CallerIDURLOffset;// CallPartySipURLInfo
CallerIDURISize;

CalledIDURLOffset;// CallPartySipURLInfo
CalledIDURISize;

ConnectedIDURIOffset;// CallPartySipURLInfo
ConnectedIDURISize;

RedirectionIDURIOffset;// CallPartySipURLInfo
RedirectionIDURISize;
RedirectingIDURIOffset;// CallPartySipURLInfo
RedirectingIDURISize;

Struct CallPartySipURLInfo

{

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

enum {

dwUserOffset; //sip user string
dwUserSize;

dwHostOffset; //host name string
dwHostSize;

dwPort; // integer port number
dwTransportType; // SIP_TRANS TYPE
dwURLType;// SIP_URL_TYPE

CTI_SIP TRANSPORT TCP=1,
CTI_SIP TRANSPORT UDP,
CTI_SIP TRANSPORT TLS

} SIP_TRANS TYPE;

enum {

CTI_NO _URL = O,
CTI_SIP URL,
CTI_TEL URL

} SIP_URL_TYPE;

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter4 Cisco Device Specific Extensions

Cisco Line Device Specific Extensions W

Parameters

Parameter Value

TapiCallerPartyUnicodeNameOff set The size, in bytes, of the variably sized field containing

TapiCallerPartyUnicodeNameSize the Unicode Caller party identifier nameinformation, and
the offset, in bytes, from the beginning of the
LINECALLINFO data structure.

TapiCallerPartyLocale Containsthe Unicode Caller party identifier name Locale
information

TapiCalledPartyUnicodeNameOff set The size, in bytes, of the variably sized field containing

TapiCalledPartyUnicodeNameSi ze the Unicode Called party identifier name information,
and the offset, in bytes, from the beginning of the
LINECALLINFO data structure.

TapiCalledPartyLocae Containsthe Unicode Called party identifier nameLocale
information

TapiConnectedPartyUnicodeNameOffset | The size, in bytes, of the variably sized field containing

TapiConnectedPartyUnicodeNameSi ze the Unicode Connected party identifier name
information, and the offset, in bytes, from the beginning
of the LINECALLINFO data structure.

TapiConnectedPartyL ocale Contains the Unicode Connected party identifier name
Locale information

TapiRedirectionPartyUnicodeNameOffset | The size, in bytes, of the variably sized field containing

TapiRedirectionPartyUnicodeNameSize the Unicode Redirection party identifier name
information, and the offset, in bytes, from the beginning
of the LINECALLINFO data structure.

TapiRedirectionPartyL ocale Contains the Unicode Redirection party identifier name
Locale information

TapiRedirectingPartyUnicodeNameOffset | The size, in bytes, of the variably sized field containing

TapiRedirectingPartyUnicodeNameSize the Unicode Redirecting party identifier name
information, and the offset, in bytes, from the beginning
of the LINECALLINFO data structure.

TapiRedirectingPartyL ocale Contains the Unicode Redirecting party identifier name
Locale information

SRTPKeylInfoStructureOffset Point to SRTPKeylInfoStructure

SRTPKeylInfoStructureSize Total size of SRTP info

SRTPKeylInfoStructureElementCount Number of SRTPKeylInfoStructure element

SRTPKeylInfoStructureElementFixedSize |Fixed size of SRTPKeylnfoStructure

SecureM edial ndicator Indicates whether media is secure and whether
application is authorized for key information

MasterKeyOffset Contains the offset and size of SRTP MasterKey

MasterKeySize information

M aster SaltOff set Contains the offset and size of SRTP MasterSaltKey

MasterSaltSize information

AlgorithmID Specifies negotiated SRTP algorithm 1D

IsMKIPresent Indicates whether MK is present.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter4 Cisco Device Specific Extensions |

Cisco Line Device Specific Extensions

Parameter

Value

KeyDerivationRate

Provides the KeyDerivationRate.

DSCPVaueForAudioCalls

Contains the DSCP value for Audio Calls.

Caller| DPartitionOffset
Caller| DPartitionSize

The size, in bytes, of the variably sized field containing
the Caller party identifier Partition information, and the
offset, in bytes, from the beginning of LINECALLINFO
data structure.

Call edl DPartitionOff set
CalledI DPartitionSize

The size, in bytes, of the variably sized field containing
the Called party identifier Partition information, and the
offset, in bytes, from the beginning of LINECALLINFO
data structure.

Connected| D PartitionOff set
Conneceted! DPartitionSize

The size, in bytes, of the variably sized field containing
the Connected party identifier Partition information, and
the offset, in bytes, from the beginning of
LINECALLINFO data structure.

Redirectionl DPartitionOffset
RedirectionlDPartitionSize

The size, in bytes, of the variably sized field containing
the Redirection party identifier Partition information, and
the offset, in bytes, from the beginning of
LINECALLINFO data structure.

Redirectingl D PartitionOff set
Redirectingl DPartitionSize

The size, in bytes, of the variably sized field containing
the Redirecting party identifier Partition information, and
the offset, in bytes, from the beginning of
LINECALLINFO data structure.

ExtendedCall Reason

Presents all the last feature related CTI Call reason code
to application as an extension to the standard reason
codes that TAPI supports. This provides the feature
specific information per call. As SIPPhones are now
supported through CTI, new features can be introduced
for SIPPhones during releases. Thisfield will not be
backward compatible and can change as changes or
additions are made in the S| PPhone support for afeature.
Applications should implement some default behavior to
handl e any unknown reason codes that might be provided
through this field.

For Refer the reason code is CtiCallReason_Refer.
For Replaces the reason codeis CtiCallReason_Replaces.

CallerI DURL Offset
CallerIDURLSIze

The size, in bytes, of the variably sized field containing
the Caller party identifier URL information, and the
offset, in bytes, from the beginning of LINECALLINFO
data structure.

CalledI DURL Offset
CalledIDURLSize

The size, in bytes, of the variably sized field containing
the Called party identifier URL information, and the
offset, in bytes, from the beginning of LINECALLINFO
data structure.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4 Cisco Device Specific Extensions

Note

Cisco Line Device Specific Extensions W

Parameter Value

Connectedl DURL Offset The size, in bytes, of the variably sized field containing

Connecetedl DURL Size the Connected party identifier URL information, and the
offset, in bytes, from the beginning of LINECALLINFO
data structure.

RedirectionlDURL Offset The size, in bytes, of the variably sized field containing

RedirectionIDURL Size the Redirection party identifier URL information, and the
offset, in bytes, from the beginning of LINECALLINFO
data structure.

Redirectingl DURL Offset The size, in bytes, of the variably sized field containing

RedirectinglDURL Size the Redirecting party identifier URL information, and the
offset, in bytes, from the beginning of LINECALLINFO
data structure.

To indicate there is partition Information in the LINECALLINFO structure, a
LINECALLINFOSTATE_DEVSPECIFIC will be fired.

Also, whenever thereis a change in the partition information, aLINEDEV SPECIFIC event will be fired
indicating which exact field in the devSpecific portion of the LINECALLINFO has changed as shown
below. Thisevent if fired only if the application has negotiated 7.0 extension version or higher.

LINEDEVSPECIFIC

{

hDevice = hcall //call handle for which the info has changed.

dwParaml = SLDSMT LINECALLINFO DEVSPECIFICDATA //indicates DevSpecific portion’s changed
dwParam2 = SLDST SRTP_ INFO|SLDST QOS_ INFO|SLDST PARTITION INFO|SLDST EXTENDED CALL_ INFO
dwParam3 =

dwParam3 will be security indicator if dwParam2 has bit set for SLDST_SRTP_INFO

SLDST SRTP_INFO = 0x00000001
SLDST QOS_INFO = 0x00000002
SLDST PARTITION INFO = 0x00000004
SLDST EXTENDED CALL INFO= 0x00000008

LINEDEVSTATUS Device Specific Extensions

Description
The LINEDEVSTATUS DEV_SPECIFIC_DATA structure describes the device specific extensions that
have been made to the LINEDEV STATUS structure by the Cisco Unified TSP.
Detail
typedef struct devSpecific SupportedEncoding
{
DWORD dwSupportedEncoding;
LPCSTR lpszAlternateScript;
}LINEDEVSTATUS DEV_SPECIFIC DATA;
.
Note Thisextensionisonly available if extension version 0x00060000 or higher is negotiated.
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-94a2-m .m

Chapter 4

Cisco Device Specific Extensions |

|| Cisco Line Device Specific Extensions

Parameters

DWORD dwSupportEncoding

This indicates the Support Encoding for the Unicode Party names being sent in device specfic

extension of the LINECALLINFO structure.
The typical values could be:

enum {
UnknownEncoding = 0,// Unknown encoding

NotApplicableEncoding = 1,// Encoding not applicable to this device

AsciiEncoding = 2, // ASCII encoding

Ucs2UnicodeEncoding = 3 // UCS-2 Unicode encoding

}
LPCSTR IpszAlternateScript

This parameter specifies the alternate script supported by the device. An empty string indicates the

device does not support or is not configured with an alternate script.

The only supported script in this release is "Kanji" for the Japanese locale.

CCiscolLineDevSpecific

Description

CCiscoLineDevSpecific

+-- CCiscoLineDevSpecificMsgWaiting

+-- CCiscoLineDevSpecificMsgWaitingDirn

+-- CCiscoLineDevSpecificUserControlRTPStream

+--CciscoLineDevSpecificSetStatusMsgs

+--CCiscoLineDevSpecificRedirectResetOrigCalled

+--CCiscoLineDevSpecificPortRegistrationPerCall

+--CciscoLineDevSpecificSetRTPParamsForCall

+--CCiscoLineDevSpecificRedirectSetOrigCalled

+--CCiscoLineDevSpecificJoin

+--CciscoLineDevSpecificUserSetSRTPAlgorithmID

+--CCiscoLineDevSpecificAcquire

+--CciscoLineDevSpecificDeacquire

+-- CciscoLineDevSpecificSendLineOpen

This section provides information on how to perform Cisco Unified TAPI specific functions with the
CCiscoL ineDevSpecific class, which representsthe parent classto all the following classes. It comprises

avirtual class and is provided here for informational purposes.

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter4 Cisco Device Specific Extensions

Header File

Class Detail

Functions

Parameter

Subclasses

Enumeration

Cisco Line Device Specific Extensions W

Thefile CiscoLineDevSpecific.h contains the constant, structure, and class definition for the Cisco line
device-specific classes.

class CCiscoLineDevSpecific

{

public:
CCicsoLineDevSpecific (DWORD msgType) ;
virtual ~CCiscoLineDevSpecific();
DWORD GetMsgType (void) const {return m MsgType;}
void* lpParams () {return &m MsgType;}
virtual DWORD dwSize() = 0;

private:
DWORD m_MsgType;

}i

[pParms()

Function can be used to obtain the pointer to the parameter block.
dwSize()

Function will give the size of the parameter block area.

m_MsgType
Specifies the type of message.

Each subclass of CCiscoLineDevSpecific has a different value assigned to the parameter m_MsgType.
If you are using C instead of C++, thisis the first parameter in the structure.

The CiscoL ineDev SpecificType enumeration provides valid message identifiers.

enum CiscoLineDevSpecificType {
SLDST MSG WAITING = 1,
SLDST MSG_WAITING DIRN,
SLDST USER CRTL_OF RTP STREAM,
SLDST_SET STATUS MESSAGES,
SLDST NUM_TYPE,
SLDST SWAP_HOLD SETUP_TRANSFER, // Not Supported in Cisco TSP 3.4 and Beyond
SLDST_REDIRECT RESET ORIG CALLED,
SLDST_USER_RECEIVE RTP INFO,
SLDST USER_SET RTP_INFO,
SLDST_ JOIN,
SLDST_USER_SET SRTP_ALGORITHM ID,
SLDST SEND LINE_OPEN,

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter4 Cisco Device Specific Extensions |

|| Cisco Line Device Specific Extensions

Message Waiting

CCiscoLineDevSpecific

+-- CCiscoLineDevSpecificMsgWaiting

Description

The CCiscoL ineDev SpecificM sgWaiting class turns the message waiting lamp on or off for the line that
the hLine parameter specifies.

S

Note Thisextension does not require an extension version to be negotiated.

Class Detail

class CCiscoLineDevSpecificMsgWaiting : public CCiscoLineDevSpecific
{
public:
CCiscoLineDevSpecificMsgWaiting() : CCiscoLineDevSpecific (SLDST MSG WAITING) {}
virtual ~CCiscoLineDevSpecificMsgWaiting() {}
virtual DWORD dwSize (void) const {return sizeof (*this)-4;}
DWORD m_BlinkRate;

Parameters
DWORD m_MsgType
Equals SLDST_MSG_WAITING.
DWORD m_BlinkRate
Any supported PHONELAMPMODE _ constantsthat are specified in the phoneSetL amp() function.
S
Note Only PHONELAMPMODE_OFF and PHONELAMPMODE_STEADY are supported on Cisco 79xx

IP Phones.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4 Cisco Device Specific Extensions

Cisco Line Device Specific Extensions W

Message Waiting Dirn

CCiscoLineDevSpecific

+-- CCiscoLineDevSpecificMsgWaitingDirn

Description

The CCiscoLineDevSpecificM sgWaitingDirn class turns the message waiting lamp on or off for theline
that a parameter specifies and is independent of the hLine parameter.

~

Note Thisextension does not require an extension version to be negotiated.

Class Detail

class CCiscoLineDevSpecificMsgWaitingDirn : public CCiscoLineDevSpecific
{

public:

CCiscoLineDevSpecificMsgWaitingDirn ()

CCiscoLineDevSpecific (SLDST MSG WAITING DIRN) {}

virtual ~CCiscolLineDevSpecificMsgWaitingDirn() {}

virtual DWORD dwSize (void) const {return sizeof (*this)-4;}

DWORD m_BlinkRate;

char m Dirn[25];

Parameters
DWORD m_MsgType
Equals SLDST_MSG_WAITING_DIRN.
DWORD m_BlinkRate
Asin the CCiscoLineDevSpecificM sgWaiting message.
>
Note Only PHONELAMPMODE_OFF and PHONELAMPMODE_STEADY are supported on Cisco 79xx

IP Phones.

char m_Dirn[25]

The directory number for which the message waiting lamp should be set.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter4 Cisco Device Specific Extensions |

|| Cisco Line Device Specific Extensions

Audio Stream Control

CCiscoLineDevSpecific

+-- CCiscoLineDevSpecificUserControlRTPStream

Description

The CCiscoLineDevSpecificUserControl RT PStream class control sthe audio stream of aline. To usethis
class, the lineNegotiateExtVersion APl must be called before opening the line. When
lineNegotiateExtVersion is called, the highest bit must be set on both the dwExtL owVersion and
dwExtHighVersion parameters. This causes the call to lineOpen to behave differently. The line does not
actually open, but waits for alineDevSpecific call to complete the open with more information. The
CCiscoLineDevSpecificUserControl RT PStream class provides the extra information that is required.

Procedure

Step1 Call lineNegotiateExtVersion for the devicel D of theline that isto be opened (OR 0x80000000 with the
dwExtLowVersion and dwExtHighVersion parameters).

Step2 Call lineOpen for the devicel D of the line that is to be opened.

Step3 Call lineDevSpecific with a CCiscoLineDevSpecificUserControl RTPStream message in the |pParams
parameter.

Class Detail

class CCiscoLineDevSpecificUserControlRTPStream : public CCiscoLineDevSpecific
{
public:
CCiscoLineDevSpecificUserControlRTPStream()
CCiscoLineDevSpecific (SLDST_USER _CRTL OF RTP_ STREAM),
m_ReceiveIP(-1),
m_ReceivePort (-1),
m_NumAffectedDevices (0)

{

memset (m_AffectedDeviceID, 0, sizeof (m_AffectedDevicelID)) ;

}
virtual ~CCiscoLineDevSpecificUserControlRTPStream() {}
DWORD m_ReceiveIP; // UDP audio reception IP
DWORD m_ReceivePort; // UDP audio reception port
DWORD m_NumAffectedDevices;
DWORD m_AffectedDeviceID[10];
DWORD m_MediaCapCount;
MEDIA CAPS m_MediaCaps;
virtual DWORD dwSize (void) const {return sizeof (*this)-4;}

Parameters

DWORD m_MsgType

Equals SLDST_USER_CRTL_OF RTP_STREAM
DWORD m_Receivel P:

The RTP audio reception |P address in network byte order

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4 Cisco Device Specific Extensions

Cisco Line Device Specific Extensions W

DWORD m_ReceivePort:
The RTP audio reception port in network byte order
DWORD m_NumAffectedDevices:

The TSP returns this value. It contains the number of devicelDsin the m_AffectedDevicel D array
that are valid. Any device with multiple directory numbers that are assigned to it will have multiple
TAPI lines, one per directory number.

DWORD m_AffectedDevicel D[10]:

The TSP returns this value. It contains the list of devicelDs for any device that is affected by this
call. Do not call lineDevSpecific for any other device in this list.

DWORD m_mediaCapCount
The number of codecs that are supported for this line.
MEDIA_CAPS m_MediaCaps -
A data structure with the following format:
typedef struct {
DWORD MediaPayload;
DWORD M axFramesPerPacket;
DWORD G723BitRate;
} MEDIA_CAPS[MAX_MEDIA_CAPS PER_DEVICE];

This data structure defines each codec that is supported on aline. The limit specifies 18. The
following description shows each member in the MEDIA_CAPS data structure:

M ediaPayload specifies an enumerated integer that contains one of the following val ues:

enum
{

Media Payload_G711Alawé64k

Media Payload_G711Alaw56k

Media Payload_G711Ulawé64k

Media Payload_G711Ulaw56k

Media Payload G722 64k = 6,

Media Payload G722 56k = 7,

Media Payload G722 48k = 8,

Media Payload G7231 = 9,

Media_ Payload_ G728 = 10,

Media Payload G729 = 11,

Media Payload G729AnnexA = 12,

Media_ Payload_G729AnnexB = 15,

Media Payload G729AnnexAwAnnexB = 16,

Media Payload GSM_Full Rate = 18,

Media Payload GSM Half Rate = 19,

Media Payload GSM_Enhanced Full Rate = 20,

Media Payload Wide Band 256k = 25,

Media Payload Data64 = 32,

Media Payload Data56 = 33,

Media Payload GSM = 80,

, // "restricted"

Il
Ul wN

, // "restricted"

Media Payload G726 32K = 82,
Media Payload G726 24K = 83,
Media Payload G726 16K = 84,

// Media_Payload G729 B = 85,
// Media_Payload G729 B_LOW_COMPLEXITY = 86,
} Media_ PayloadType;

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter4 Cisco Device Specific Extensions |

|| Cisco Line Device Specific Extensions

Read M axFramesPerPacket as MaxPacketSize. It specifies a 16-bit integer that indicates the
maximum desired RTP packet size in milliseconds. Typically, thisvalue is set to 20.

G723BitRate specifies a 6-byte field that contains either the G.723.1 information bit rate or is
ignored. The following list provides values for the G.723.1 field are values.

enum
{
Media G723BRate 5 3 1, //5.3Kbps
Media G723BRate 6 4 = 2 //6.4Kbps
} Media_ G723BitRate;

Set Status Messages

CCiscoLineDevSpecific

+-- CCiscoLineDevSpecificSetStatusMsgs

Description

The CCiscoL ineDevSpecificSetStatusM sgs class is used to turn on or off the status messages for theline
specified by the hLine parameter. The Cisco Unified TSP supports the following flags:

e DEVSPECIFIC_MEDIA_STREAM—Setting this flag on aline turns on the reporting of media
streaming messages for that line. Clearing this flag will turn off the reporting of media streaming
messages for that line.

e DEVSPECIFIC_CALL_TONE_CHANGED—Setting this flag on aline turns on the reporting of

call tone changed events for that line. Clearing this flag will turn off the reporting of call tone
changed events for that line.

a

Note Thisextension only appliesif extension version 0x00020001 or higher is negotiated.

Class Detail

class CCiscoLineDevSpecificSetStatusMsgs : public CCiscoLineDevSpecific

{

public:

CCiscoLineDevSpecificSetStatusMsgs ()

CCiscoLineDevSpecific (SLDST SET STATUS MESSAGES) {}
virtual ~CCiscoLineDevSpecificSetStatusMsgs () {}

DWORD m_DevSpecificStatusMsgsFlag;

virtual DWORD dwSize (void) const {return sizeof (*this)-4;}

i

Parameters

DWORD m_MsgType
Equals SLDST_SET_STATUS_MESSAGES.

DWORD m_DevSpecificStatusM sgsFlag
Identifies which status changes cause a LINE_DEV SPECIFIC message to be sent to the application.
The supported values are as follows:

#define DEVSPECIFIC MEDIA STREAM 0x00000001
#define DEVSPECIFIC CALL TONE CHANGED 0x00000002

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4 Cisco Device Specific Extensions

Cisco Line Device Specific Extensions W

Swap-Hold/SetupTransfer

S

Note

Description

~

Note

Class Details

Parameters

Thisis not supported in Cisco Unified TSP 4.0 and beyond.

The CCiscoLineDevSpecificSwapHoldSetupTransfer class was used to perform a SetupTransfer
between acall that isin CONNECTED stateand acall that isinthe ONHOLD state. Thisfunctionwould
change the state of the connected call to ONHOLDPENDTRANSFER state and the ONHOLD call to
CONNECTED state. Thiswould then allow a CompleteTransfer to be performed on the two calls. In
Cisco Unified TSP 4.0 and beyond, the TSP allows applications to use lineCompleteTransfer() to
transfer the calls without having to use the CCiscoLineDevSpecificSwapHoldSetupTransfer function.
Therefore, this function returns LINEERR_OPERATIONUNAVAIL in Cisco Unified TSP 4.0 and
beyond.

CCiscoLineDevSpecific

+-- CCiscoLineDevSpecificSwapHoldSetupTransfer

The CCiscolLineDevSpecificSwapHoldSetupTransfer class performs a setupTransfer between acall that
isin CONNECTED state and a call that in ONHOLD state. This function will change the state of the
connected call to ONHOLDPENDTRANSFER state and the ONHOLD call to CONNECTED state. This
will then allow a completeTransfer to be performed on the two calls.

This extension only appliesif extension version 0x00020002 or higher is negotiated.

class CCiscoLineDevSpecificSwapHoldSetupTransfer : public CCiscoLineDevSpecific

{
public:
CCiscoLineDevSpecificSwapHoldSetupTransfer ()
CCiscoLineDevSpecific (SLDST SWAP HOLD SETUP TRANSFER) {}
virtual ~CCiscolLineDevSpecificSwapHoldSetupTransfer () {}
DWORD heldCalllID;
virtual DWORD dwSize (void) const {return sizeof (*this)-4;} // subtract out the
virtual function table pointer

i

DWORD m_MsgType

Equals SLDST_SWAP_HOLD SETUP_TRANSFER.
DWORD heldCallID

Equalsthe callid of the held call that is returned in dwCallID of LPLINECALLINFO.
HCALL hCall (in lineDevSpecific parameter list)

Equals the handle of the connected call.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter4 Cisco Device Specific Extensions |

|| Cisco Line Device Specific Extensions

Redirect Reset Original Called ID

CCiscoLineDevSpecific

+-- CCiscoLineDevSpecificRedirectResetOrigCalled

Description

The CCiscoLineDevSpecificRedirectResetOrigCalled class redirects a call to another party while
resetting the original called ID of the call to the destination of the redirect.

~

Note Thisextension only applies if extension version 0x00020003 or higher is negotiated.

Class Details

class CCiscoLineDevSpecificRedirectResetOrigCalled: public CCiscoLineDevSpecific

{
public:
CCiscoLineDevSpecificRedirectResetOrigCalled:
CCiscoLineDevSpecific (SLDST REDIRECT RESET ORIG CALLED) {}
virtual ~CCiscolLineDevSpecificRedirectResetOrigCalled{}
char m DestDirn[25]; //redirect destination address
virtual DWORD dwSize (void) const {return sizeof (*this)-4;} // subtract out the
virtual function table pointer

i

Parameters

DWORD m_MsgType

Equals SLDST_REDIRECT_RESET_ORIG_CALLED.
DWORD m_DestDirn

Equal s the destination address where the call needs to be redirected.
HCALL hCall (In lineDevSpecific parameter list)

Equals the handle of the connected call.

Port Registration per Call

CCiscoLineDevSpecific

+-- CCiscoLineDevSpecificPortRegistrationPerCall

Description

The CCiscoL ineDevSpecificPortRegistrationPerCall classregistersthe CTI Port for the RTP parameters
on aper call basis. With this request, the application receives the new lineDevSpecific event requesting
that it needs to set the RTP parameters for the call.

To usethis class, the lineNegotiateExtVersion APl must be called before opening the line. When calling
lineNegotiateExtVersion, the highest bit must be set on both the dwExtL owVersion and
dwExtHighVersion parameters.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4

Cisco Device Specific Extensions

Step 1

Step 2
Step 3

Y

Note

Class Details

Cisco Line Device Specific Extensions W

This causes the call to lineOpen to behave differently. The line is not actually opened, but waits for a
lineDevSpecific call to complete the open with more information. The extrainformation required is
provided in the CciscolL ineDevSpecificPortRegistrationPerCall class.

Procedure

Call lineNegotiateExtVersion for the devicel D of the line to be opened (or 0x80000000 with the
dwExtLowVersion and dwExtHighVersion parameters)

Call lineOpen for the devicel D of the line to be opened.

Call lineDevSpecific with a CciscoLineDevSpecificPortRegistrationPerCall message in the |pParams
parameter.

This extension is only available if the extension version 0x00040000 or higher gets negotiated.

class CCiscoLineDevSpecificPortRegistrationPerCall: public CCiscoLineDevSpecific
public:

CCiscoLineDevSpecificPortRegistrationPerCall ()

CCiscoLineDevSpecific (SLDST_USER_RECEIVE_RTP_INFO),

m_RecieveIP(-1), m_RecievePort(-1), m NumAffectedDevices (0)

memset ((char*)m AffectedDeviceID, 0, sizeof (m AffectedDevicelID)) ;

}

virtual ~ CCiscolineDevSpecificPortRegistrationPerCall () {}

DWORD m_NumAffectedDevices;

DWORD m_AffectedDeviceID[10];

DWORD m_MediaCapCount;

MEDIA CAPSm MediaCaps;

virtual DWORD dwSize (void) const {return sizeof (*this)-4;}
// subtract out the virtual function table pointer

}i

Parameters
DWORD m_MsgType
Equals SLDST_USER_RECEIVE_RTP_INFO
DWORD m_NumAffectedDevices:
Thisvalue is returned by the TSP. It contains the number of devicel Dsin the m_AffectedDevicelD
array which are valid. Any device with multiple directory numbers assigned to it will have multiple
TAPI lines, one per directory number.
DWORD m_AffectedDevicel D[10]:
Thisvalueis returned by the TSP. It contains the list of devicel Ds for any device affected by this
call. Do not call lineDevSpecific for any other device in this list.
DWORD m_mediaCapCount
The number of codecs supported for thisline.
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter4 Cisco Device Specific Extensions |

|| Cisco Line Device Specific Extensions

MEDIA_CAPS m_MediaCaps -
A data structure with the following format:

typedef struct {

DWORD MediaPayload;

DWORD MaxFramesPerPacket;

DWORD G723BitRate;

} MEDIA CAPS[MAX MEDIA CAPS PER DEVICE] ;

This data structure defines each codec supported on aline. The limit is 18. The following isa
description for each member in the MEDIA_CAPS data structure:

MediaPayload is an enumerated integer containing one of the following values.

enum
{

Media_ Payload_G711Alawé4k =
Media_ Payload_G711Alaw56k =
Media_ Payload_G711Ulawé4k =
Media Payload G711Ulaw56k =
Media Payload G722 64k = 6,
Media Payload G722 56k = 7,
Media Payload G722 48k = 8,
Media_ Payload_G7231 = 9,
Media_ Payload_ G728 = 10,
Media Payload G729 = 11,
Media Payload G729AnnexA = 12,

Media_ Payload_G729AnnexB = 15,

Media Payload G729AnnexAwAnnexB = 16,

Media Payload GSM_Full Rate = 18,

Media Payload GSM Half Rate = 19,

Media Payload GSM_Enhanced Full Rate = 20,
Media Payload Wide Band 256k = 25,

Media Payload Data64 = 32,

Media Payload Data56 = 33,

Media Payload GSM = 80,

Media Payload G726 32K = 82,

Media Payload G726 24K 83,

Media Payload G726 16K = 84,

// Media Payload G729 B = 85,

// Media_Payload G729 B_LOW_COMPLEXITY = 86,
} Media PayloadType;

, // "restricted"

Ul wN

, // "restricted"

M axFramesPerPacket should read as MaxPacketSize and is a 16 bit integer specified in
milliseconds. It indicates the RTP packet size. Typically, this valueis set to 20.

G723BitRate is asix byte field which contains either the G.723.1 information bit rate or is
ignored. The values for the G.723.1 field are values enumerated as follows.

enum
{

Media G723BRate 5 3 = 1, //5.3Kbps
Media G723BRate 6 4 = 2 //6.4Kbps
} Media G723BitRate;

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4 Cisco Device Specific Extensions

Cisco Line Device Specific Extensions W

Setting RTP Parameters for Call

CCiscoLineDevSpecific

+-- CCiscoLineDevSpecificSetRTPParamsForCall

Description

The CCiscoLineDevSpecificSetRTPParamsForCall class sets the RTP parameters for a specific call.
S

Note Thisextension only appliesif extension version 0x00040000 or higher gets negotiated.

Class Details

class CciscoLineDevSpecificSetRTPParamsForCall: public CCiscoLineDevSpecific
{
public:

CciscoLineDevSpecificSetRTPParamsForCall ()
CCiscoLineDevSpecific (SLDST USER_SET RTP INFO) {}
virtual ~ CciscoLineDevSpecificSetRTPParamsForCall () {}
virtual DWORD dwSize (void) const {return sizeof (*this)-4;}
// subtract out the virtual function table pointer

DWORD m_RecieveIP; // UDP audio reception IP
DWORD m_RecievePort; // UDP audio reception port

Parameters

DWORD m_MsgType
Equals SLDST_USER_SET_RTP_INFO
DWORD m_Receivel P

Thisisthe RTP audio reception | P address in the network byte order to set for the call.
DWORD m_ReceivePort

Thisisthe RTP audio reception port in the network byte order to set for the call.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter4 Cisco Device Specific Extensions |

|| Cisco Line Device Specific Extensions

Redirect Set Original Called ID

CCiscoLineDevSpecific

+-- CCiscoLineDevSpecificRedirectSetOrigCalled

Description

The CCiscoLineDevSpecificRedirectSetOrigCalled class redirects a call to another party while setting
the original called ID of the call to any other party.

S

Note This extension only appliesif extension version 0x00040000 or higher gets negotiated.

Class Details

class CCiscoLineDevSpecificRedirectSetOrigCalled: public CCiscoLineDevSpecific

{
public:
CCiscoLineDevSpecificRedirectSetOrigCalled ()
CCiscoLineDevSpecific (SLDST REDIRECT SET ORIG CALLED) {}
virtual ~ CCiscoLineDevSpecificRedirectSetOrigCalled () {}
char m _DestDirn[25];
char m_SetOriginalCalledTo[25];
// subtract virtual function table pointer
virtual DWORD dwSize (void) const {return (sizeof (*this) - 4)

Parameters

DWORD m_MsgType
Equals SLDST_REDIRECT_SET_ORIG_CALLED
char m_DestDirn[25]

Indicates the destination of the redirect. If this request is being used to transfer to voice mail, then
set this field to the voice mail pilot number of the DN of the line whose voice mail you want to
transfer to.

char m_SetOriginal CalledTo[25]

Indicatesthe DN to which the Original Call edParty needs to be set to. If thisrequest is being used to
transfer to voice mail, then set thisfield to the DN of the line whose voice mail you want to transfer
to.

HCALL hCall (in lineDevSpecific parameter list)
Equals the handle of the connected call.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4 Cisco Device Specific Extensions

Join

Description

S

Note

Class Details

Parameters

Cisco Line Device Specific Extensions W

CCiscoLineDevSpecific

+-- CCiscoLineDevSpecificJoin

The CCiscoLineDevSpecificJoin class joins two or more callsinto one conference call. Each of thecalls
being joined can either be in the ONHOLD or the CONNECTED call state.

The Cisco Unified CallManager may succeed in joining some of the calls specified in the Join request,
but not all. In this case, the Join request will succeed and the Cisco Unified CallManager attemptstojoin
as many calls as possible.

This extension only appliesif extension version 0x00040000 or higher gets negotiated.

class CCiscoLineDevSpecificJoin : public CCiscoLineDevSpecific

{

public:
CCiscoLineDevSpecificJoin () : CCiscolLineDevSpecific (SLDST JOIN) {}
virtual ~ CCiscolLineDevSpecificJdoin () {}

DWORD m_CallIDsToJoinCount;

CALLIDS TO JOIN m_CallIDsToJoin;

virtual DWORD dwSize (void) const {return sizeof (*this)-4;}
// subtract out the virtual function table pointer

DWORD m_MsgType
equals SLDST_JOIN
DWORD m_CalllDsToJoinCount
The number of calllDs contained in the m_CalllDsToJoin parameter.
CALLIDS TO_JOIN m_CalllDsToJoin
A data structure that contains an array of dwCalllDsto join with the following format:

typedef struct {
DWORD CallIiD; // dwCallID to Join
} CALLIDS TO JOIN[MAX CALLIDS TO JOIN] ;

where MAX_CALLIDS TO_JOIN is defined as:

const DWORD MAX CALLIDS TO_JOIN = 14;

HCALL hCall (in LineDevSpecific parameter list)
equals the handle of the call that is being joined with calllDsToJoin to create the conference.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter4 Cisco Device Specific Extensions |

|| Cisco Line Device Specific Extensions

Set User SRTP Algorithm IDs

Description

Note

Step 1

Step 2
Step 3

Step 4

Class Detail

CCiscoLineDevSpecific

+-- CciscoLineDevSpecificUserSetSRTPAlgorithmID

The CciscoLineDevSpecificUserSetSRTPAIgorithmID class is used to allow applications to set SRTP
algorithm I Ds. To use thisclass, the lineNegotiateExtVersion APl must be call ed before opening theline.
When calling lineNegotiateExtVersion the highest bit or second highest bit must be set on both the
dwExtLowVersion and dwExtHighVersion parameters. This causes the call to lineOpen to behave
differently. The line is not actually opened, but waits for alineDevSpecific call to complete the open
with more information. The extrainformation required is provided in the
CciscoLineDevSpecificUserSetSRTPAlgorithmID class.

This extension is only available if extension version 0x80070000, 0x4007000 or higher is negotiated.

Procedure

Call lineNegotiateExtVersion for the devicel D of theline to be opened. (0x80070000 or 0x4007000 with
the dwExtL owVersion and dwExtHighVersion parameters)

Call lineOpen for the devicel D of the line to be opened.

Call lineDevSpecific with a CciscoLineDevSpecificUser SetSRTPAIgorithmI D message in the | pParams
parameter to specify SRTP algorithm ids.

Call lineDevSpecific with either CciscoLineDevSpecificPortRegistrationPerCall or
CCiscoL ineDevSpecificUserControl RT PStream message in the |pParams parameter.

class CciscoLineDevSpecificUserSetSRTPAlgorithmID: public CCiscoLineDevSpecific
{
public:

CciscoLineDevSpecificUserSetSRTPAlgorithmID ()

CCiscoLineDevSpecific (SLDST_USER SET SRTP_ALGORITHM 1ID),

m_SRTPAlgorithmCount (0),

m_SRTP_Fixed Element_Size (4)

{

1

virtual ~ CciscoLineDevSpecificUserSetSRTPAlgorithmID () {}
DWORD m_SRTPAlgorithmCount; //Maximum is MAX CISCO_SRTP_ALGORITHM IDS
DWORD m_SRTP_Fixed Element_ Size;//Should be size of DWORD, it should be always 4.
DWORD m_SRTPAlgorithm Offset; //offset from beginning of the message buffer
virtual DWORD dwSize (void) const {return sizeof (*this)-4;} // subtract out the virtual
function table pointer

}i

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4 Cisco Device Specific Extensions

Cisco Line Device Specific Extensions W

Supported Algorithm Constants

enum CiscoSRTPAlgorithmIDs

{

SRTP_NO_ ENCRYPTION=0,
SRTP_AES 128 COUNTER=1

Parameters
DWORD m_MsgType
Equals SLDST_USER_SET_SRTP_ALGORITHM_ID
DWORD m_SRTPAlgorithmCount
This numbers of algorithm Ids specified in this message.
DWORD m_SRTP_Fixed_Element_Size
Should be size of DWORD, it should be always 4.
DWORD m_SRTPAlgorithm_Offset
Offset from the beginning of the message buffer. Thisis offset whereyou start put algorithmid array.
S
Note dwsSize should be recalculated based on size of the structure, m_SRTPAlgorithmCount and
m_SRTP_Fixed_Element_Size.
Explicit Acquire
CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificAcquire
Description
The CCiscoLineDevSpecificAcquire classis used to explicitly acquire any CTI controllable device.
If an Superprovider app needsto open any CT1 Controllable device on the Unified CM system. The app
should explicitly acquire that device using the above interface. After successful response, it can open the
device as usual.
S
Note Thisextension isonly available if extension version 0x00070000 or higher is negotiated.

Class Details

class CCiscoLineDevSpecificAcquire : public CCiscoLineDevSpecific

{

public:
CCiscoLineDevSpecificAcquire () : CCiscoLineDevSpecific (SLDST_ACQUIRE) {}
virtual ~ CCiscoLineDevSpecificAcquire () {}

char m DeviceName[16];
virtual DWORD dwSize (void) const {return sizeof (*this)-4;}
// subtract out the virtual function table pointer

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter4 Cisco Device Specific Extensions |

|| Cisco Line Device Specific Extensions

Parameters

DWORD m_MsgType
Equals SLDST_ACQUIRE
char m_DeviceName[16]

The DeviceName that needs to be explicitly acquired.

Explicit De-Acquire

CCiscoLineDevSpecific

+--CCiscoLineDevSpecificDeacquire

Description
The CCiscoLineDevSpecificDeacquire classis used to explicitly de-acquire the explicitly acquired
device.
If an Superprovider app has explicitly acquired any CTI Controllable device on the Unified CM system,
then the app should explicitly De-acquire that device using the above interface.
S

Note Thisextensionisonly available if extension version 0x00070000 or higher is negotiated.

Class Details

class CCiscoLineDevSpecificDeacquire : public CCiscoLineDevSpecific

{

public:
CCiscoLineDevSpecificDeacquire () : CCiscoLineDevSpecific (SLDST ACQUIRE) {}
virtual ~ CCiscoLineDevSpecificDeacquire () {}

char m DeviceName[16];
virtual DWORD dwSize (void) const {return sizeof (*this)-4;}
// subtract out the virtual function table pointer

Parameters

DWORD m_MsgType
Equals SLDST_DEACQUIRE
char m_DeviceName[16]

The DeviceName that needs to be explicitly de-acquired.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4 Cisco Device Specific Extensions

Cisco Line Device Specific Extensions W

Redirect FAC CMC

CCiscoLineDevSpecific

+--CCiscoLineDevSpecificRedirect FACCMC

Description

The CCiscoLineDevSpecificRedirectFACCMC classis used to redirect a call to another party that
requiresa FAC, CMC, or both.

S

Note Thisextension is only available if extension version 0x00050000 or higher is negotiated.

If the FAC isinvalid, then the TSP will return a new device specific error code
LINEERR_INVALIDFAC. If the CMC isinvalid, then the TSP will return a new device specific
error code LINEERR_INVALIDCMC.

Class Detail

class CCiscoLineDevSpecificRedirectFACCMC: public CCiscoLineDevSpecific

{

public:

CCiscoLineDevSpecificRedirectFACCMC () : CCiscoLineDevSpecific (SLDST REDIRECT_FAC_CMC)
{1

virtual ~ CCiscoLineDevSpecificRedirectFACCMC () {}

char m DestDirn([49];

char m FAC[17];

char m_CMC[17];

// subtract virtual function table pointer

virtual DWORD dwSize (void) const {return (sizeof (*this) - 4)

Parameters

DWORD m_MsgType

Equals SLDST_REDIRECT_FAC_CMC
char m_DestDirn[49]

Indicates the destination of the redirect.
char m_FAC[17]

Indicates the FAC digits. If the application does not want to pass any FAC digits, then it must set
this parameter to a NULL string.

char m_CMCJ[17]

Indicatesthe CMC digits. If the application does not want to pass any CMC digits, then it must set
this parameter to a NULL string.

HCALL hCall (in lineDevSpecific parameter list)
Equals the handle of the call to be redirected.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter4 Cisco Device Specific Extensions |

|| Cisco Line Device Specific Extensions

Blind Transfer FAC CMC

CCiscoLineDevSpecific

+--CCiscoLineDevSpecificBlindTransferFACCMC

Description

The CCiscoLineDevSpecificBlindTransferFACCMC classis used to blind transfer acall to another
party that requires a FAC, CMC, or both.

S

Note Thisextension is only available if extension version 0x00050000 or higher is negotiated.

If the FAC isinvalid, then the TSP will return a new device specific error code
LINEERR_INVALIDFAC. If the CMC isinvalid, then the TSP will return a new device specific
error code LINEERR_INVALIDCMC.

Class Detail

class CCiscoLineDevSpecificBlindTransferFACCMC: public CCiscoLineDevSpecific
{
public:

CCiscoLineDevSpecificBlindTransferFACCMC ()
CCiscoLineDevSpecific (SLDST BLIND TRANSFER FAC CMC) {}

virtual ~ CCiscoLineDevSpecificBlindTransferFACCMC () {}

char m DestDirn([409];

char m FAC[17];

char m_CMC[17];

// subtract virtual function table pointer

virtual DWORD dwSize (void) const {return (sizeof (*this) - 4)

Parameters

DWORD m_MsgType

Equals SLDST_BLIND _TRANSFER_FAC_CMC
char m_DestDirn[49]

Indicates the destination of the blind transfer.
char m_FAC[17]

Indicates the FAC digits. If the application does not want to pass any FAC digits, then it must set
this parameter to aNULL string.

char m_CMCJ[17]

Indicatesthe CMC digits. If the application does not want to pass any CMC digits, then it must set
this parameter to a NULL string.

HCALL hCall (in lineDevSpecific parameter list)
Equals the handle of the call to be blind transferred.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4 Cisco Device Specific Extensions

Cisco Line Device Specific Extensions W

CTI Port Third Party Monitor

Description

Step 1

Step 2
Step 3

S

Note

Class Detail

Parameters

CCiscoLineDevSpecific

+-- CCiscoLineDevSpecificCTIPortThirdPartyMonitor

The CCiscoLineDevSpecificCTIPortThirdPartyMonitor classis used for opening CTI portsin third
party mode.

To usethis class, thelineNegotiateExtVersion APl must be called before opening the line. When calling
lineNegotiateExtVersion the highest bit must be set on both the dwExtL owVersion and
dwExtHighVersion parameters. This causes the call to lineOpen to behave differently. Thelineis not
actually opened, but waits for alineDevSpecific call to complete the open with more information. The
extrainformation required is provided in the CCiscoLineDevSpecificCTIPortT hirdPartyM onitor class.

Procedure

Call lineNegotiateExtVersion for the devicel D of the line to be opened. (OR 0x80000000 with the
dwExtLowVersion and dwExtHighVersion parameters)

Call lineOpen for the devicel D of the line to be opened.

Call lineDevSpecific with a CCiscoLineDevSpecificCTIPortThirdPartyMonitor message in the
IpParams parameter.

This extension is only available if extension version 0x00050000 or higher is negotiated.

class CCiscoLineDevSpecificCTIPortThirdPartyMonitor: public CCiscoLineDevSpecific
{
public:

CCiscoLineDevSpecificCTIPortThirdPartyMonitor ()

CCiscoLineDevSpecific (SLDST CTI PORT THIRD PARTY MONITOR) {}

virtual ~ CCiscoLineDevSpecificCTIPortThirdPartyMonitor () {}

virtual DWORD dwSize (void) const {return sizeof (*this)-4;} //

subtract out the virtual function table pointer

DWORD m_MsgType
equals SLDST_CTI_PORT_THIRD_PARTY_MONITOR

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter4 Cisco Device Specific Extensions |

|| Cisco Line Device Specific Extensions

Send Line Open

Description

Step 1

Step 2
Step 3

Step 4

S

Note

Class Detail

CCiscoLineDevSpecific

+-- CciscoLineDevSpecificSendLineOpen

The CciscoLineDevSpecificSendLineOpen class is used for general delayed open purpose. To use this
class, the lineNegotiateExtVersion APl must be called before opening the line. When calling
lineNegotiateExtVersion the second highest bit must be set on both the dwExtL owVersion and
dwExtHighVersion parameters. This causes the call to lineOpen to behave differently. Thelineis not
actually opened, but waits for alineDevSpecific call to complete the open with more information. The
extrainformation reguired is provided in the CciscoLineDevSpecificUser SetSRTPAlgorithmID class.

Procedure

Call lineNegotiateExtVersion for the devicel D of the line to be opened. (0x40070000 with the
dwExtLowVersion and dwExtHighVersion parameters)

Call lineOpen for the devicel D of the line to be opened.

Call other lineDevSpecific, like CciscoLineDevSpecificUserSetSRTPAlgorithml D message in the
IpParams parameter to specify SRTP algorithm ids.

Call lineDevSpecific with either CciscoL ineDevSpecificSendLineOpen to trigger the lineopen from TSP
side.

This extension is only available if extension version 0x40070000 or higher is negotiated.

class CciscoLineDevSpecificSendLineOpen: public CCiscoLineDevSpecific
{
public:
CciscoLineDevSpecificSendLineOpen ()
CCiscoLineDevSpecific (SLDST_ SEND LINE OPEN) {}

virtual ~ CciscoLineDevSpecificSendLineOpen () {}
virtual DWORD dwSize (void) const {return sizeof (*this)-4;} // subtract out the virtual
function table pointer

}i

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter4 Cisco Device Specific Extensions

Cisco Phone Device Specific Extensions

Table 4-2 lists the subclasses of CiscoPhoneDevSpecific.

Cisco Phone Device Specific Extensions W

Table 4-2 Cisco Phone Device Specific TAPI functions
Cisco Functions Synopsis
CCiscoPhoneDevSpecific The CCiscoPhoneDev Specific classis the parent class

to the following classes.

CCiscoPhoneDevSpecificDataPassThrough | Allows application to send the Device Specific XSl

data through CTI.

CCiscoPhoneDevSpecificAcquire Allows application to acquire any CTI Controllable

device that can be later opened in superprovider mode.

CCiscoPhoneDevSpecificDeacquire Allows application to de-acquire a CTI Controllable

device that was explicitly acquired.

CCiscoPhoneDevSpecificGetRTPSnapshot | Allows application to request secure RTP indicator for

calls on the device.

CCiscoPhoneDevSpecific

Description

Header File

Class Detail

CCiscoPhoneDevSpecific

+-- CCiscoPhoneDevSpecificDataPassThrough

This section provides information on how to perform Cisco TAPI specific functions with the
CCiscoPhoneDev Specific class, which is the parent classto all the following classes. It isavirtual class

and is provided here for informational purposes.

Thefile CiscoL ineDevSpecific.h contains the constant, structure and class definition for the Cisco phone

device specific classes.

class CCiscoPhoneDevSpecific

{

public :

CCiscoPhoneDevSpecific (DWORD msgType) :m_MsgType (msgType) {;}

virtual ~CCiscoPhoneDevSpecific() {;}

DWORD GetMsgType (void) const { return m MsgType; }

void *lpParams (void) const {return (void*)&m MsgType; }

virtual DWORD dwSize (void) const = 0;
private :
DWORD m_MsgType ;

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter4 Cisco Device Specific Extensions |

|| Cisco Phone Device Specific Extensions

Functions

Parameter

Subclasses

Enumeration

[pParms()
function can be used to obtain the pointer to the parameter block
dwSize()

function will give the size of the parameter block area

m_MsgType
specifies the type of message.

Each subclass of CCiscoPhoneDevSpecific has a different value assigned to the parameter m_MsgType.
If you are using C instead of C++, thisis the first parameter in the structure.

Valid message identifiers are found in the CiscoPhoneDevSpecificType enumeration.

enum CiscoLineDevSpecificType {
CPDST_DEVICE DATA PASSTHROUGH REQUEST = 1

i

CCiscoPhoneDevSpecificDataPassThrough

Description

~

Note

CCiscoPhoneDevSpecific

+-- CCiscoPhoneDevSpecificDataPassThrough

XSl enabled IP phones allow applications to directly communicate with the phone and access XSl
features (e.g. manipulate display, get user input, play tone, etc.). In order to allow TAPI applications
accessto some of these X Sl capabilities without having to setup and maintain an independent connection
directly to the phone, TAPI will provide the ability to send device data through the CTI interface. This
featureis exposed as a Cisco Unified TSP device specific extension.

PhoneDev SpecificDataPassthrough request is only supported for the IP phone devices. Application has
to open a TAPI phone device with minimum extension version 0x00030000 to make use of this feature.

The CCiscoPhoneDevSpecificDataPassThrough class is used to send the device specific datato CTI
controlled I P Phone devices.

This extension reguires applications to negotiate extension version as 0x00030000.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4

Cisco Device Specific Extensions

Class Detail

Parameters

Note

Cisco Phone Device Specific Extensions W

class CCiscoPhoneDevSpecificDataPassThrough : public CCiscoPhoneDevSpecific
public:

CCiscoPhoneDevSpecificDataPassThrough ()

CCiscoPhoneDevSpecific (CPDST _DEVICE DATA PASSTHROUGH REQUEST)

memset ((char*)m DeviceData, 0, sizeof (m DeviceData))

virtual ~CCiscoPhoneDevSpecificDataPassThrough() {;}

// data size determined by MAX DEVICE DATA PASSTHROUGH SIZE

TCHAR m_DeviceData [MAX DEVICE DATA PASSTHROUGH SIZE]

// subtract out the virtual funciton table pointer size

virtual DWORD dwSize (void) const {return (sizeof (*this)-4) ;}

DWORD m_MsgType
equals CPDST_DEVICE_DATA_PASSTHROUGH_REQUEST.
DWORD m_DeviceData
This is the character buffer containing the XML datato be sent to phone device

MAX_DEVICE_DATA_PASSTHROUGH_SIZE = 2000

A phone can pass data to an application and it can be retrieved by using PhoneGetStatus
(PHONESTATUS:devSpecificData). See PHONESTATUS description for further details.

CCiscoPhoneDevSpecificAcquire

CCiscoPhoneDevSpecific

+-- CCiscoPhoneDevSpecificAcquire

Description
The CCiscoPhoneDevSpecificAcquire class is used to explicitly acquire any CTI controllable device.
If an Superprovider app needsto open any CT1 Controllable device on the Unified CM system. The app
should explicitly acquire that device using the above interface. After successful response, it can open the
device as usual.
.
Note Thisextensionisonly available if extension version 0x00070000 or higher is negotiated.
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter4 Cisco Device Specific Extensions |

I Cisco Phone Device Specific Extensions

Class Details

class CCiscoPhoneDevSpecific Acquire : public CCiscoPhoneDevSpecific

{

public:
CCiscoPhoneDevSpecificAcquire () : CCiscoPhoneDevSpecific (CPDST ACQUIRE) {}
virtual ~ CCiscoPhoneDevSpecificAcquire () {}

char m DeviceName[16];
virtual DWORD dwSize (void) const {return sizeof (*this)-4;}
// subtract out the virtual function table pointer

Parameters
DWORD m_MsgType
equals CPDST_ACQUIRE

char m_DeviceName[16]
The DeviceName that needs to be explicitly acquired.

CCiscoPhoneDevSpecificDeacquire

CCiscoPhoneDevSpecific

+-- CCiscoPhoneDevSpecificDeacquire

Description

The CCiscoPhoneDevSpecificDeacquire classis used to explicitly de-acquire an explicitly acquired device.

If a SuperProvider application has explicitly acquired any CTI Controllable device on the CallManager
system, then the application should explicitly de-acquire that device using this interface.

S

Note Thisextensionisonly available if extension version 0x00070000 or higher is negotiated.

Class Details

class CCiscoPhoneDevSpecificDeacquire : public CCiscoPhoneDevSpecific

{

public:
CCiscoPhoneDevSpecificDeacquire () : CCiscoPhoneDevSpecific (CPDST ACQUIRE) {}
virtual ~ CCiscoPhoneDevSpecificDeacquire () {}

char m DeviceName[16];
virtual DWORD dwSize (void) const {return sizeof (*this)-4;}
// subtract out the virtual function table pointer

Parameters

DWORD m_MsgType
equals CPDST_DEACQUIRE
char m_DeviceName[16]
The DeviceName that needs to be explicitly de-acquired.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4 Cisco Device Specific Extensions

Messages

CCiscoPhoneDevSpecificGetRTPSnapshot

CCiscoPhoneDevSpecific

+-- CCiscoPhoneDevSpecificGetRTPSnapshot

Description

The CCiscoPhoneDevSpecificGetRTPSnapshot class is used to request Call RTP snapshot event from
the device. There will be LineCallDevSpecific event for each call on the device.

S

Note Thisextension is only available if extension version 0x00070000 or higher is negotiated.

Class Details

class CCiscoPhoneDevSpecificGetRTPSnapshot: public CCiscoPhoneDevSpecific

{

public:
CCiscoPhoneDevSpecificGetRTPSnapshot () : CCiscoPhoneDevSpecific
(CPDST_REQUEST RTP SNAPSHOT INFO) {}
virtual ~ CCiscoPhoneDevSpecificGetRTPSnapshot () {}

char m DeviceName[16];
virtual DWORD dwSize (void) const {return sizeof (*this)-4;}
// subtract out the virtual function table pointer

Parameters

DWORD m_MsgType
equals CPDST_DEACQUIRE
char m_DeviceName[16]
The DeviceName that needs to be explicitly de-acquired.

Messages

This section describes the line device specific messages that the Cisco Unified TSP supports.

Description

An application receives nonstandard TAPI messages in the following LINE_DEV SPECIFIC messages:
e A message to signal when to stop and start streaming RTP audio.
¢ A message containing the call handle of active calls when the application starts up.
¢ A message indicating to set the RTP parameters based on the data of the message.
¢ A message indicating secure media status.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter4 Cisco Device Specific Extensions |

M Messages

The message type is an enumerated integer with the following values:

enum CiscoLineDevSpecificMsgType

{

SLDSMT START TRANSMISION = 1,
SLDSMT_ STOP_TRANSMISION,
SLDSMT START_ RECEPTION,

SLDSMT STOP_RECEPTION,

SLDSMT LINE EXISTING CALL,

SLDSMT OPEN_LOGICAL_CHANNEL,

SLDSMT CALL_ TONE_ CHANGED,

SLDSMT LINECALLINFO_ DEVSPECIFICDATA,
SLDSMT NUM TYPE

Start Transmission Events

SLDSMT_START_TRANSMISION
When a message is received, the RTP stream transmission should commence.

dwParam?2 specifies the network byte order 1P address of the remote machine to which the RTP
stream should be directed.

dwParam3, specifies the high-order word that is the network byte order IP port of the remote
machine to which the RTP stream should be directed.

dwParam3, specifies the low-order word that is the packet size in milliseconds to use.

The application receives these messages to signal when to start streaming RTP audio. At extension
version 1.0 (0x00010000), the parameters have the following format:

dwParaml contains the message type.
dwParam?2 contains the |P address of the remote machine.

dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.

At extension version 2.0 (0x00020000), start transmission has the following format:

dwParaml:from highest order bit to lowest

First two bits blank

Precedence value 3 hits

Maximum frames per packet 8 bits

G723 bit rate 2 bits

Silence suppression value 1 bit

Compression type 8 bits

Message type 8 bits

dwParam?2 contains the IP address of the remote machine

dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4

Cisco Device Specific Extensions

Messages

At extension version 4.0 (0x00040000), start transmission has the following format:
e hCall — The call of the Start Transmission event
e dwParaml:from highest order bit to lowest
— First two bits blank
— Precedence value 3 bits
— Maximum frames per packet 8 bits
— G723 bit rate 2 bits
— Silence suppression value 1 bit
— Compression type 8 bits
- Message type 8 hits
e dwParam2 contains the IP address of the remote machine

¢ dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.

Start Reception Events

SLDSMT_START_RECEPTION
When a message is received, the RTP stream reception should commence.

e dwParam2 specifies the network byte order IP address of the local machine to use.

e dwParam3, specifies the high-order word that is the network byte order IP port to use.

e dwParam3, specifies the low-order high-order word that is the packet size in milliseconds to use.
When a message is received, the RTP stream reception should commence.
At extension version 1, the parameters have the following format:

e dwParaml contains the message type.

e dwParam2 contains the IP address of the remote machine.

e dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.

At extension version 2 start reception has the following format:
e dwParaml:from highest order bit to lowest
e First 13 bits blank
e G723 bit rate 2 bits
¢ Silence suppression value 1 bit
e Compression type 8 bits
e Message type 8 bits
e dwParam2 contains the IP address of the remote machine

¢ dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter4 Cisco Device Specific Extensions |

M Messages

At extension version 4.0 (0x00040000), start reception has the following format:
e hCall — The call of the Start Reception event
e dwParaml:from highest order bit to lowest
— First 13 bits blank
— G723 bit rate 2 bits
— Silence suppression value 1 bit
— Compression type 8 bits
- Message type 8 bits
e dwParam2 contains the IP address of the remote machine

e dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.

Stop Transmission Events

SLDSMT_STOP_TRANSMISION
When amessage is received, transmission of the streaming should be stopped.

At extension version 1.0 (0x00010000), stop transmission has the following format:
e dwParaml — Message type

At extension version 4.0 (0x00040000), stop transmission has the following format:
e hCall — The call the Stop Transmission event is for

e dwParaml — Message type

Stop Reception Events

SLDSMT_STOP_RECEPTION
When a message is received, reception of the streaming should be stopped.

At extension version 1.0 (0x00010000), stop reception has the following format:
e dwParaml - message type

At extension version 4.0 (0x00040000), stop reception has the following format:
e hCall — The call the Stop Reception event is for
e dwParaml — Message type

Existing Call Events

SLDSMT_LINE_EXISTING_CALL

These events inform the application of existing calls in the PBX when it starts up. The format of the
parametersis as follows:

e dwParaml — Message type
e dwParam2 — Call object
e dwParam3 — TAPI call handle

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4 Cisco Device Specific Extensions

Messages

Open Logical Channel Events

Note

SLDSMT_OPEN_LOGICAL_CHANNEL

When acall has media established at a CTI Port or Route Point that is registered for Dynamic Port
Registration, this message is received indicating that an | P address and UDP port number needs to be set
for the call.

This extension is only available if extension version 0x00040000 or higher gets negotiated.

The following is the format of the parameters:

hCall - The call the Open Logical Channel event isfor
dwParaml — M essage type
dwParam2 — Compression Type

dwParam3 — Packet size in milliseconds

LINECALLINFO_DEVSPECIFICDATA Events

SLDSMT_LINECALLINFO_DEVSPECIFICDATA

This message indicates DEV SPECIFICDATA information change in the DEV SPECIFIC portion of the
LINECALLINFO structure for SRTP, QoS and Partition support.

Note

This event is available only if extension version 0x00070000 or higher is negotiated.

The format of the parametersis:

hCall - The call handle
dwParaml - Message type

SLDSMT LINECALLINFO DEVSPECIFICDATA\

dwParam?2 - Thisis abitMask Indicator field for SRTP, QoS and Partition.

SLDST SRTP_INFO | SLDST QOS INFO | SLDST PARTITION INFO | SLDST EXTENDED CALL INFO

The bit mask values are:

SLDST SRTP_INFO = 0x00000001
SLDST_QOS_INFO = 0x00000002

SLDST PARTITION INFO = 0x00000004
SLDST EXTENDED CALI, INFO = 0x00000008

For example, if there are changes in SRTP and QoS but not in Partition, then both the
SLDST_SRTP_INFO and SLDST_QOS INFO bits will be set. The value for dwParam2 =
SLDST_SRTP_INFO | SLDST_QOS_INFO = 0x00000011.

dwParam3

If there is achange in the SRTP Information, then this field would contain the
CiscoSecuritylndicator.

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter4 Cisco Device Specific Extensions |

M Messages

enum CiscoSecurityIndicator

{

SRTP_MEDIA ENCRYPT KEYS AVAILABLE,
SRTP_MEDIA ENCRYPT USER NOT AUTH,
SRTP_MEDIA ENCRYPT KEYS UNAVAILABLE,
SRTP_MEDIA NOT ENCRYPTED

Q‘

Note dwParam3 is used when dwParam?2 has the SRTP bit mask set.

Call Tone Changed Events

SLDSMT_CALL TONE_CHANGED

When atone change occurs on a call, this message is received indicating the tone and the feature that
caused the tone change.

Note Thisextension is only available if extension version 0x00050000 or higher is negotiated. In the
Cisco Unified TSP 4.1 release and beyond, this event will only be sent for Call Tone Changed Events
where the tone is CTONE_ZIPZIP and the tone is being generated as a result of the FAC/CMC feature.

The format of the parametersis as follows:
e hCall—The call that the Call Tone Changed event is for
¢ dwParam—Message type
e dwParam2—CTONE_ZIPZIP, 0x31 (Zip Zip tone)

e dwParam3—If dwParam2 is CTONE_ZIPZIP, this parameter contains a bitmask with the following
possible values:

— CZIPZIP_FACREQUIRED—If this bit is set, it indicates that a FAC is required.
- CZIPZIP_CMCREQUIRED—If this bit is set, it indicates that a CMC is required.

Note For aDN that reguires both codes, the first event is always for the FAC and CM C code. The application
has the option to send both codes separated by # in the same request. The second event generation is
optional based on what the application sends in the first request.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4 Cisco Device Specific Extensions

Message Sequence Charts

This section illustrates a subset of the call scenarios supported by the Cisco Unified TSP. The event

Message Sequence Charts 1l

order is not guaranteed in all cases and can vary depending on the scenario and the event.

Thefollowing is alist of abbreviations used in the CTI events shown in each scenario.

NP—Not Present

L R—L astRedirectingParty
CH—CtiCallHandle
GCH—CtiGlobalCallHandle
RIU—RemotelnUse flag
DH—DeviceHandle

Manual Qutbound Call

Precondition
Party A isidle.

Action

CTIl Messages

TAPI Messages

TAPI Structures

1. Party A goes offhook

NewCallEven
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=0OutBound,
Reason=Direct

LINE_APPNEWCALL
hDevice=A
dwcCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=0WNER

LINECALLINFO (hCall-1)

hLine=A

dwCalllID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedl D=NP
dwRedirectionlD=NP
dwRedirectionlD=NP

Call StateChangedEvent,

LINE_CALLSTATE

No change

CH=C1, hDevice=hCall-1
State=Dialtone, dwcCallbackInstance=0
Cause=CauseNoError, dwParam1=DIALTONE
Reason=Direct, dwParam2=UNAVAIL
Calling=A, dwParam3=0
Called=NP,
OrigCalled=NP,
LR=NP

2. Party A dials Party B Call StateChangedEvent, LINE_CALLSTATE No change
CH=C1, hDevice=hCall-1
State=Dialing, dwCallbacklnstance=0
Cause=CauseNoError, dwParam1=DIALING
Reason=Direct, dwParam2=0
Calling=A, dwParam3=0
Called=NP,
OrigCalled=NP,
LR=NP

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter 4

Cisco Device Specific Extensions |

|| Message Sequence Charts

3. Party B accepts call

Call StateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A,

Called=B,
OrigCalled=B,

LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=PROCEEDING
dwParam2=0

dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A

dwCalllD=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedl D=NP
dwRedirectionlD=NP
dwRedirectionlD=NP

Call StateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,

Called=B,
OrigCalled=B,

LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

4. Party B answers call

Call StateChangedEvent,
CH=C1,
State=Connected,
Cause=CauseNoError,
Reason=Direct,
Calling=A,

Called=B,
OrigCalled=B,

LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=CONNECTED
dwParam2=ACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=CONNECTEDID
dwParam2=0

dwParam3=0

LINECALLINFO (hCall-1)
hLine=A

dwCalllID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedl D=B
dwRedirectionlD=NP
dwRedirectionlD=NP

Call StartReceptionEvent,
DH=A, CH=C1

LINE_DEVSPECIFIC!
hDevice=hCall-1
dwCallBackInstance=0
dwParaml1=StartReception
dwParam2=IP Address
dwParam3=Port

No change

Call StartTransmissionEvent,
DH=A, CH=C1

LINE_DEVSPECIFIC?
hDevice=hCall-1
dwcCallBacklnstance=0
dwParaml1=StartTransmission
dwParam2=IP Address
dwParam3="Port

No change

1. LINE_DEVSPECIFIC events are sent only if the application has requested them using lineDevSpecific()
2. LINE_DEVSPECIFIC events are sent only if the application has requested them using lineDevSpecific()

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter4 Cisco Device Specific Extensions

Message Sequence Charts 1l

Blind Transfer

Precondition
A calls B. B answers. A and B are connected.

Action

CTIl Messages

TAPI Messages

TAPI Structures

Party B does a lineBlindTranfser()
to blind transfer call from party A
to party C

Party A

CallPartyInfoChangedEvent,
CH=C1,
CallingChanged=False,

LINE_CALLINFO
hDevice=hCall-1
dwcCallbackInstance=0

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT

Calling=A, dwParam1=CONNECTEDID, |dwCallerlD=A
CalledChanged=True, REDIRECTINGID, dwCalledID=B
Called=C, REDIRECTIONID dwConnectedl D=NULL
OriginalCalled=B, dwRedirectingl D=NP
LR=B, dwRedirectionl D=NP
Cause=BlindTransfer

Party B

Call StateChangedEvent,
CH=C2,

TSPI: LINE_CALLSTATE
|hDevice=hCall-1

TSPI LINECALLINFO
dwOrigin=INTERNAL

State=Idle, dwCallbacklnstance=0 dwReason=DIRECT
Reason=Direct, dwParam1=IDLE dwCallerl D=A
Calling=A, dwParam2=0 dwCalledID=B
Called=B, dwParam3=0 dwConnected D=NULL
OriginalCalled=B, dwRedirectingl D=NULL
LR=NULL dwRedirectionlD=NULL
Party C
NewCallEvent, TSPI:LINE_APPNEWCALL |TSPI LINECALLINFO
CH=C3, hDevice=C dwOrigin=INTERNAL
origin=Internal_Inbound, dwCallbacklnstance=0 dwReason=TRANSFER
Reason=BlindTransfer, dwParam1=0 dwCallerl D=A
Calling=A, dwParam2=hCall-1 dwCalledID=C
Called=C, dwParam3=0OWNER dwConnected D=NULL
OriginalCalled=B, dwRedirectingl D=B
LR=B dwRedirectionlD=C
Party C is offering Party A

Call StateChangeEvent,
CH=C1,
State=Ringback,

TSPI: LINE_CALLSTATE,
hDevice=hCall-1,
dwcCallbackInstance=0,

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT

Reason=Direct, dwParaml1= RINGBACK dwCallerID=A
Calling=A, dwParam2=0 dwCalledID=B
Called=C, dwParam3=0 dwConnectedl D=NULL
OriginalCalled=B, dwRedirectingl D=B
LR=B dwRedirectionID=C
Party C

Call StateChangedEvent,
CH=C3,

State=Offering,
Reason=BlindTransfer,
Calling=A,

Called=C,
OriginalCalled=B, LR=B

TSPI: LINE_CALLSTATE,
hDevice=hCall-1,
dwcCallbackInstance=0,
dwParaml1= OFFERING
dwParam2=0

dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwCallerID=A
dwCalledID=C
dwConnectedlD=NULL
dwRedirectingl D=B
dwRedirectionID=C

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter 4

Cisco Device Specific Extensions |

|| Message Sequence Charts

Redirect Set Original Called (TxToVM)

Precondition

A calls B. B answers. A and B are connected.

Action

CTIl Messages

TAPI Messages

TAPI Structures

Party B does lineDevSpecific for
REDIRECT_SET_ORIG_CALLED
with DestDN = C's VMP and
SetOrigCalled = C.

Party A

CallPartyInfoChangedEvent,
CH=C1, CallingChanged=False,

Calling=A, CalledChanged=True,
Called=C, OriginalCalled=NULL,

LR=NULL, Cause=Redirect

LINE_CALLINFO,
hDevice=hCall-1,
dwcCallbackInstance=0,
dwParam1=CONNECTEDID,
REDIRECTINGID,
REDIRECTIONID

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=C
dwConnectedlD=NULL
dwRedirectingl D=NP
dwRedirectionlD=NP

Party B
Call StateChangedEvent, TSPI: LINE_CALLSTATE, TSPI LINECALLINFO
CH=C2, hDevice=hCall-1, dwOrigin=INTERNAL
State=Idle, dwCallbacklnstance=0, dwReason=DIRECT
reason=DIRECT, dwParam1=IDLE dwCallerlD=A
Calling=A, dwParam2=0 dwCalledID=B
Called=B, dwParam3=0 dwConnected D=NULL
OriginalCalled=B, dwRedirectingl D=NULL
LR=NULL dwRedirectionlD=NULL
Party C's VMP
NewCallEvent, TSPI: LINE_APPNEWCALL |TSPI LINECALLINFO
CH=C3, hDevice=C dwOrigin=INTERNAL
origin=Internal_Inbound, dwCallbacklnstance=0 dwReason=REDIRECT
reason=Redirect, dwParam1=0 dwCallerl D=A
Calling=A, dwParam2=hCall-1 dwCalledID=C
Called=C, dwParam3=0OWNER dwConnected D=NULL
OriginalCalled=C, dwRedirectingl D=B
LR=B dwRedirectionID=C's VMP
Party C is offering Party A
Call StateChangeEvent, TSPI: LINE_CALLSTATE TSPI LINECALLINFO
CH=C1, hDevice=hCall-1 dwOrigin=OUTBOUND
State=Ringback, dwCallbacklInstance=0 dwReason=DIRECT
Reason=Direct, dwParam1= RINGBACK dwCallerl D=A
Calling=A, dwParam2=0 dwCalledID=B
Called=C, dwParam3=0 dwConnected D=NULL
OriginalCalled=C, dwRedirectingl D=B
LR=B dwRedirectionID=C's VMP
Party C
Call StateChangedEvent, TSPI: LINE_CALLSTATE TSPI LINECALLINFO
CH=C3, hDevice=hCall-1 dwOrigin=INTERNAL
State=Offering, dwCallbacklnstance=0 dwCallerlD=A
Reason=Redirect, dwParaml= OFFERING dwCalledID=C
Calling=A, dwParam2=0 dwConnected D=NULL
Called=C, dwParam3=0 dwRedirectingl D=B
OriginalCalled=C, dwRedirectionlD=C
LR=B

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter4 Cisco Device Specific Extensions

Shared Line Scenarios

Initiate a New Call Manually

Party A and Party A’ are shared line appearances.

Party A and Party A’ areidle.

Message Sequence Charts 1l

Action CTIl Messages

TAPI Messages

TAPI Structures

NewCallEvent,
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=0OutBound,
Reason=Direct,
RIU=false

1. Party A goes offhook

LINE_APPNEWCALL
hDevice=A
dwcCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=0WNER

LINECALLINFO (hCall-1)
hLine=A

dwCalllID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedl D=NP
dwRedirectionlD=NP
dwRedirectionlD=NP

Call StateChangedEvent,
CH=C1,
State=Dialtone,
Cause=CauseNoError,
Reason=Direct,
Calling=A,

Called=NP,
OrigCalled=NP,
LR=NP,

RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=DIALTONE
dwParam2=UNAVAIL
dwParam3=0

No change

Party A’

NewCallEvent,
CH=C1,
GCH=G1,
Calling=A’,
Called=NP,
OrigCalled=NP,
LR=NP, S
tate=Dialtone,
Origin=0OutBound,
Reason=Direct,
RIU=true

LINE_APPNEWCALL
hDevice=A'
dwcCallbackInstance=0
dwParam1=0
dwParam2=hCall-2
dwParam3=0WNER

LINECALLINFO (hCall-2)
hLine=A’

dwCalllD=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerl D=A’
dwCalledID=NP
dwConnectedl D=NP
dwRedirectionlD=NP
dwRedirectionlD=NP

Call StateChangedEvent,
CH=C1,
State=Dialtone,
Cause=CauseNoError,
Reason=Direct,
Calling=A,

Called=NP,
OrigCalled=NP,
LR=NP,

RIU=true

LINE_CALLSTATE
hDevice=hCall-2
dwcCallbackInstance=0
dwParam1=CONNECTED
dwParam2=INACTIVE
dwParam3=0

No change

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter4 Cisco Device Specific Extensions |
|| Message Sequence Charts
2. Party A dials Party B Party A
Call StateChangedEvent, LINE_CALLSTATE No change
CH=C1, hDevice=hCall-1
State=Dialing, dwCallbacklnstance=0
Cause=CauseNoError, dwParam1=DIALING
Reason=Direct, dwParam2=0
Calling=A, dwParam3=0
Called=NP,
OrigCalled=NP,
LR=NP,
RlIU=false
Party A’
None None None
3. Party B accepts call Party A
CallPartyInfoChangedEvent, Ignored No change

CH=C1,
CallingChanged=False,
Calling=A,
CalledChanged=true,
Called=B,
Reason=Direct,
RlIU=false

Call StateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A,

Called=B,
OrigCalled=B,

LR=NP,

RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=PROCEEDING
dwParam2=0

dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=

CALLERID, CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A

dwCalllD=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedl D=NP
dwRedirectionlD=NP
dwRedirectionlD=NP

Call StateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,

Called=B,
OrigCalled=B,

LR=NP,

RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwCallbacklnstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter4 Cisco Device Specific Extensions

Message Sequence Charts 1l

3. Party B accepts call
(continued)

Party A’

CallPartyInfoChangedEvent,
CH=C1,
CallingChanged=False,
Calling=A’,
CalledChanged=true,
Called=B,

Reason=Direct,

RIU=true

Ignored

No change

Call StateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A’,

Called=B,
OrigCalled=B,

LR=NP,

RIU=true

LINE_CALLSTATE
hDevice=hCall-2
dwcCallbackInstance=0
dwParam1=CONNECTED
dwParam2=INACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-2
dwcCallbackInstance=0
dwParaml=

CALLERID, CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-2)
hLine=A’

dwCalllID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerl D=A’
dwCalledID=B
dwConnectedl D=NP
dwRedirectionlD=NP
dwRedirectionlD=NP

Call StateChangedEvent,
CH=C1, State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A', Called=B,
OrigCalled=B,

LR=NP, RIU=true

LINE_CALLSTATE
hDevice=hCall-2
dwCallbacklnstance=0
dwParam1=CONNECTED
dwParam2=INACTIVE
dwParam3=0

No change

4. Party B answers call

Party A

Call StateChangedEvent,
CH=C1,
State=Connected,

LINE_CALLSTATE
hDevice=hCall-1
dwcCallbackInstance=0

LINECALLINFO (hCall-1)
hLine=A
dwCalllID=T1

Cause=CauseNoError, dwParam1=CONNECTED dwOrigin=OUTBOUND
Reason=Direct, dwParam2=ACTIVE dwReason=DIRECT
Calling=A, dwParam3=0 dwCallerl D=A
Called=B, LINE CALLINEO dwCalledID=B
OrigCalled=B, hDevice=hCall-1 dwConnectedl D=B
LR=NP dwCallbackInstance=0 dwRedirectionl D=NP
RIU=false dwParan1=CONNECTEDID |dwRedirectionID=NP
dwParam2=0, dwParam3=0
Party A’

Call StateChangedEvent,
CH=C1,
State=Connected,
Cause=CauseNoError,
Reason=Direct,
Calling=A’,

Called=B,
OrigCalled=B,

LR=NP,

RIU=true

LINE_CALLSTATE
hDevice=hCall-2
dwcCallbackInstance=0
dwParam1=CONNECTED
dwParam2=INACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-2
dwcCallbackInstance=0
dwParam1=CONNECTEDID
dwParam2=0, dwParam3=0

LINECALLINFO (hCall-2)
hLine=A’

dwCalllID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerl D=A’
dwCalledID=B
dwConnectedl D=B
dwRedirectionlD=NP
dwRedirectionlD=NP

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Cisco Device Specific Extensions |

|| Message Sequence Charts

Presentation Indication

Make a Call Through Translation Pattern

In the Translation pattern admin pages, both the callerlD/Name and ConnectedID/Name are set to
"Restricted".

Action

CTIl Messages

TAPI Messages

TAPI Structures

Party A goes offhook

NewCallEvent,

CH=C1, GCH=G1,
Calling=A, Called=NP,
OrigCalled=NP, LR=NP,
State=Dialtone,
Origin=0OutBound,
Reason=Direct

LINE_APPNEWCALL
hDevice=A
dwcCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=0WNER

LINECALLINFO (hCall-1)
hLine=A

dwCalllD=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerlD=A
dwCalledID=NP
dwConnectedl D=NP
dwRedirectionlD=NP
dwRedirectionlD=NP

Translation pattern

CH=C1, State=Dialing,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP

Call StateChangedEvent, LINE_CALLSTATE No change
CH=C1, State=Dialtone, hDevice=hCall-1
Cause=CauseNoError, dwCallbacklnstance=0
Reason=Direct, Calling=A, dwParam1=DIALTONE
Called=NP, OrigCalled=NP, dwParam2=UNAVAIL
LR=NP dwParam3=0
Party A dials Party B through Call StateChangedEvent, LINE_CALLSTATE No change

hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

Party B accepts the call

Call StateChangedEvent,
CH=C1, State=Proceeding,
Cause=CauseNoError,
Reason=Direct, Calling=A,
CallingPartyPl=Allowed,
Called=B, CalledPartyPl=
Restricted, OrigCalled=B,
OrigCalledPl=restricted,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwcCallbackInstance=0
dwParaml1=
PROCEEDING
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A

dwCalllD=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerlD=A

dwCallerI DName=A's Name
dwCalledID=B
dwCalledIDName=B’s name
dwConnectedl D=NP
dwConnectedl DName=NP
dwRedirectionlD=NP
dwRedirectionlDName=NP
dwRedirectionlD=NP
dwRedirectionlDName=NP

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

4-48

oL-9442-01 |

| Chapter4 Cisco Device Specific Extensions

Message Sequence Charts 1l

Party B accepts the call
(continued)

Call StateChangedEvent,
CH=C1, State=Ringback,
Cause=CauseNoError,
Reason=Direct, Calling=A,
CallingPl = Allowed, Called=B,
CalledPIl = Restricted,
OrigCalled=B, OrigCalledPl =
Restricted, LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedl DFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedl D=NP
dwRedirectionlD=NP
dwRedirectionl DFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP

Party B answers the call

Call StateChangedEvent,
CH=C1, State=Connected,
Cause=CauseNoError,
Reason=Direct, Calling=A,
CallingPl = Allowed, Called=B,
CalledPIl = Restricted,
OrigCalled=B, OrigCalledPl =
Restricted, LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=CONNECTED
dwParam2=ACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=CONNECTEDID
dwParam2=0

dwParam3=0

LINECALLINFO (hCall-1)
hLine=A

dwCalllID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A

dwCallerI DName=A's Name
dwCalledID=B
dwCalledIDName=B’s Name
dwConnectedI D=A,
dwConnectedl DName=

A's Name,

dwRedirectingl D=NP
dwRedirectingl DName=NP
dwRedirection| DFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionlD=NP
dwRedirectionlDName=NP

Call StartReceptionEvent,
DH=A, CH=C1

LINE_DEVSPECIFIC!
hDevice=hCall-1
dwcCallBacklnstance=0
dwParaml=
StartReception
dwParam2=IP Address
dwParam3="Port

No change

Call StartTransmissionEvent,
DH=A, CH=C1

LINE_DEVSPECIFIC!
hDevice=hCall-1
dwcCallBacklnstance=0
dwParaml=
StartTransmission
dwParam2=IP Address
dwParam3="Port

No change

1. LINE_DEVSPECIFIC events are only sent if the application has requested for them using lineDevSpecific().

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter4 Cisco Device Specific Extensions |

|| Message Sequence Charts

Blind Transfer Through Translation Pattern

A calls viatranslation pattern B.
B answers.
A and B are connected.

Action CTI Messages TAPI Messages TAPI Structures

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4

Cisco Device Specific Extensions

Message Sequence Charts 1l

Party B does a lineBlindTranfser()
to blind transfer call from party A
to party C viatranslation pattern

Party A

CallPartyInfoChangedEvent,
CH=C1,
CallingChanged=False,
Calling=A,

CallingParty Pl =Restricted,
CalledChanged=True,
Called=C,
CalledPartyPl=Restricted,
OriginalCalled=NULL,
Original CalledPl=Restricted,
LR=NULL,
Cause=BlindTransfer

LINE_CALLINFO,
hDevice=hCall-1,
dwcCallbackInstance=0,
dwParam1=CONNECTEDID,
REDIRECTINGID,
REDIRECTIONID

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerl DFlags =
LINECALLPARTYID_
BLOCKED
dwCallerID=NP

dwCallerI DName=NP
dwCalledID=B
dwCalledIDName=B’s name
dwConnectedl DFlags =
LINECALLPARTYID_
BLOCKED

dwConnectedl D=NP
dwConnectedl DName=NP
dwRedirectingl D=B
dwRedirectingl DName=
B’s name

dwRedirection| DFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionlDName=NP

Party B

Call StateChangedEvent,
CH=C2,

State=Idle, Reason=Direct,
Calling=A,

CallingParty Pl =Restri cted,
Called=B,
CalledPartyPl=Restricted,
OriginalCalled=B,
OrigCalledPartyPl=Restricted,
LR=NULL

TSPI: LINE_CALLSTATE,
hDevice=hCall-1,
dwcCallbackInstance=0,
dwParam1=IDLE
dwParam2=0

dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwReason=DIRECT
dwCallerl DFlags =
LINECALLPARTYID_
BLOCKED
dwCallerID=NP

dwCallerI DName=NP
dwCalledID=B
dwCalledIDName=B’s name
dwConnectedl DFlags =
LINECALLPARTYID_
BLOCKED

dwConnectedl D=NP
dwConnectedl DName=NP
dwRedirectingl D=B
dwRedirectingl DName=
B’s name

dwRedirectionl DFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionlD=NP
dwRedirectionlDName=NP

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter 4

Cisco Device Specific Extensions

|| Message Sequence Charts

Party B does a lineBlindTranfser()
to blind transfer call from party A
to party C viatranslation pattern
(continued)

Party C

NewCallEvent, TSPI: LINE_APPNEWCALL TSPI LINECALLINFO
CH=C3, hDevice=C dwOrigin=INTERNAL
origin=Internal_Inbound, dwCallbacklnstance=0 dwReason=TRANSFER
Reason=BlindTransfer, dwParam1=0 dwCallerl DFlags =

Calling=A,

CallingParty Pl =Restri cted,
Called=C,
CalledPartyPl=Restricted,
OriginalCalled=B,
OrigCalledPartyPl=Restricted,
LR=B,

L astRedirectingParty Pl =
Restricted

dwParam2=hCall-1
dwParam3=0WNER

LINECALLPARTYID_
BLOCKED
dwCallerID=NP

dwCallerI DName=NP
dwCalledID=NP
dwCalledIDName=NP
dwConnectedl DFlags =
LINECALLPARTYID_
BLOCKED

dwConnectedl D=NP
dwConnectedl DName=NP
dwRedirectingl D=B
dwRedirectingl DName=
B's name

dwRedirection| DFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionlDName=NP

Party C is offering

Party A

Call StateChangeEvent,
CH=C1,

State=Ringback,
Reason=Direct,
Calling=A,

CallingParty Pl =Restri cted,
Called=C,
CalledPartyPl=Restricted,
OriginalCalled=B,
OrigCalledPartyPl=Restricted,
LR=B,

L astRedirectingParty Pl =
Restricted

TSPI: LINE_CALLSTATE,
hDevice=hCall-1,
dwcCallbackInstance=0,
dwParaml1= RINGBACK
dwParam2=0

dwParam3=0

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerl DFlags =
LINECALLPARTYID_
BLOCKED
dwCallerID=NP

dwCallerI DName=NP
dwCalledID=B
dwCalledIDName=B’s name
dwConnectedl DFlags =
LINECALLPARTYID_
BLOCKED

dwConnectedl D=NP
dwConnectedl DName=NP
dwRedirectingl D=B
dwRedirectingl DName=
B’s name

dwRedirection| DFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionlDName=NP

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

0L-9442-01

| Chapter4

Cisco Device Specific Extensions

Message Sequence Charts 1l

Party C is offering (continued)

Party C

Call StateChangedEvent,
CH=C3,

State=Offering,
Reason=BlindTransfer,
Calling=A,

CallingParty Pl =Restri cted,
Called=C,
CalledPartyPl=Restricted,
OriginalCalled=B,

OrigCalledPartyPl=Restricted,

LR=B,
L astRedirectingParty Pl =
Restricted

TSPI: LINE_CALLSTATE,
hDevice=hCall-1,
dwcCallbackInstance=0,
dwParaml1= OFFERING
dwParam2=0

dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwCallerl DFlags =
LINECALLPARTYID_
BLOCKED dwcCallerID=NP
dwCalleriIDName=NP
dwCalledID=NP
dwCalledIDName=NP
dwConnectedl DFlags =
LINECALLPARTYID_
BLOCKED

dwConnectedl D=NP
dwConnectedl DName=NP
dwRedirectingl D=B
dwRedirectingl DName=
B's name

dwRedirection| DFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionl D=NP
dwRedirectionlDName=NP

Forced Authorization and Client Matter Code Scenarios

Manual Call to a Destination that Requires a FAC

Preconditions

Party A isldle. Party B requires an FAC.
Note that the scenario is similar if Party B

requires a CMC instead of an FAC.

Actions CTI Message TAPI Messages TAPI Structures

Party A goes offhook NewCallEvent, LINE_APPNEWCALL LINECALLINFO (hCall-1)
CH=C1, hDevice=A hLine=A
GCH=G1, dwCallbacklnstance=0 dwCalllID=T1
Calling=A, dwParam1=0 dwOrigin=OUTBOUND
Called=NP, dwParam2=hCall-1 dwReason=DIRECT
OrigCalled=NP, dwParam3=0OWNER dwCallerl D=A
LR=NP, dwCalledID=NP

State=Dialtone,
Origin=0OutBound,
Reason=Direct

dwConnectedl D=NP
dwRedirectionlD=NP
dwRedirectionlD=NP

Call StateChangedEvent,
CH=C1,
State=Dialtone,
Cause=CauseNoError,
Reason=Direct,
Calling=A,

Called=NP,
OrigCalled=NP,

LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALTONE
dwParam2=UNAVAIL
dwParam3=0

No change

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter 4

Cisco Device Specific Extensions |

|| Message Sequence Charts

Actions

Party A dials Party B

CTI Message TAPI Messages TAPI Structures
Call StateChangedEvent, LINE_CALLSTATE No change
CH=C1, hDevice=hCall-1

State=Dialing, dwCallbacklnstance=0
Cause=CauseNoError, dwParam1=DIALING

Reason=Direct, dwParam2=0

Calling=A, dwParam3=0

Called=NP,

OrigCalled=NP,

LR=NP

Call ToneChangedEvent, LINE_DEVSPECIFIC No change

CH=C1,
Tone=ZipZip,
Feature=FACCMC,
FACRequired=True,
CMCRequired=False

hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=SLDSMT_CALL_
TONE_CHANGED
dwParam2=CTONE_ZIPZIP
dwParam3=
CZIPZIP_FACREQUIRED

Party A dialsthe FAC and Party
B accepts the call

Call StateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A,

Called=B,
OrigCalled=B,

LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=PROCEEDING
dwParam2=0

dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A

dwCalllD=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedl D=NP
dwRedirectionlD=NP
dwRedirectionlD=NP

Call StateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,

Called=B,
OrigCalled=B,

LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter4 Cisco Device Specific Extensions

Manual Call to a Destination that Requires both FAC and CMC

Preconditions
Party A isldle. Party B requires an FAC and aCMC.

Message Sequence Charts

Actions CTI Message TAPI Messages TAPI Structures

Party A goes offhook NewCallEvent, LINE_APPNEWCALL LINECALLINFO (hCall-1)
CH=C1, hDevice=A hLine=A
GCH=G1, dwCallbacklnstance=0 dwCalllID=T1
Calling=A, dwParam1=0 dwOrigin=OUTBOUND
Called=NP, dwParam2=hCall-1 dwReason=DIRECT
OrigCalled=NP, dwParam3=0OWNER dwCallerlD=A
LR=NP, dwCalledID=NP

State=Dialtone,
Origin=0OutBound,
Reason=Direct

dwConnectedl D=NP
dwRedirectionlD=NP
dwRedirectionlD=NP

Call StateChangedEvent,
CH=C1,
State=Dialtone,

LINE_CALLSTATE
hDevice=hCall-1
dwcCallbackInstance=0

No change

Cause=CauseNoError, dwParam1=DIALTONE
Reason=Direct, dwParam2=UNAVAIL
Calling=A, dwParam3=0
Called=NP,
OrigCalled=NP,
LR=NP
Party A dials Party B Call StateChangedEvent, LINE_CALLSTATE No change
CH=C1, hDevice=hCall-1
State=Dialing, dwCallbacklnstance=0
Cause=CauseNoError, dwParam1=DIALING
Reason=Direct, dwParam2=0
Calling=A, dwParam3=0
Called=NP,
OrigCalled=NP,
LR=NP
Call ToneChangedEvent, LINE_DEVSPECIFIC No change
CH=C1, hDevice=hCall-1
Tone=ZipZip, dwCallbacklnstance=0
Feature=FACCMC, dwParam1=SLDSMT_CALL_
FACRequired=True, TONE_CHANGED
CMCRequired=True dwParam2=CTONE_ZIPZIP
dwParam3=
CZIPZIP_FACREQUIRED,
CZIPZIP_CMCREQUIRED
Party A dialsthe FAC. Call ToneChangedEvent, LINE_DEVSPECIFIC No change

CH=C1,
Tone=ZipZip,
Feature=FACCMC,
FACRequired=False,
CMCRequired=True

hDevice=hCall-1
dwcCallbackInstance=0

dwParam1=SLDSMT_CALL_

TONE_CHANGED
dwParam2=CTONE_ZIPZIP
dwParam3=
CZIPZIP_CMCREQUIRED

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

[oL-9442-01

Chapter 4

Cisco Device Specific Extensions |

|| Message Sequence Charts

Actions

CTl Message

TAPI Messages

TAPI Structures

Party A dialsthe CMC and Party

B accepts the call.

Call StateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A,

Called=B,
OrigCalled=B,

LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwcCallbackInstance=0

dwParam1=PROCEEDING

dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A

dwCalllID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerlD=A
dwCalledID=B
dwConnectedl D=NP
dwRedirectionlD=NP
dwRedirectionlD=NP

Call StateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,

Called=B,
OrigCalled=B,

LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

lineMakeCall to a Destination that Requires a FAC

Preconditions
Party A isldle. Party B requiresan FAC. Notethat the scenario is similar if Party requiresa CM C instead

of an FAC
Actions CTI Message TAPI Messages TAPI Structures
Party A doesalineMakeCall() |NewCallEvent, LINE_CALLINFO LINECALLINFO (hCall-1)
to Party B CH=C1, hDevice=hCall-1 hLine=A
GCH=G1, dwCallbacklnstance=0 dwCalllID=T1
Calling=A, dwParam1=ORIGIN dwOrigin=OUTBOUND
Called=NP, dwParam2=0 dwReason=DIRECT
OrigCalled=NP, dwParam3=0 dwCallerlD=A
LR=NP, dwCalledID=NP

State=Dialtone,
Origin=0OutBound,
Reason=Direct

LINE_CALLINFO
hDevice=hCall-1
dwcCallbackInstance=0
dwParaml=

REASON, CALLERID
dwParam2=0
dwParam3=0

dwConnectedl D=NP
dwRedirectionlD=NP
dwRedirectionlD=NP

Call StateChangedEvent,
CH=C1,

State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A,

Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter4 Cisco Device Specific Extensions

Message Sequence Charts 1l

Actions

CTl Message

TAPI Messages

TAPI Structures

Party A does alineMakeCall()
to Party B (continued)

Call ToneChangedEvent,
CH=C1, Tone=ZipZip,
Feature=FACCMC,
FACRequired=True,
CMCRequired=False

LINE_DEVSPECIFIC
hDevice=hCall-1
dwcCallbackInstance=0

dwParam1=SLDSMT_CALL_

TONE_CHANGED
dwParam2=CTONE_ZIPZIP
dwParam3=
CZIPZIP_FACREQUIRED

No change

Party A does alineDial() with
the FAC in the dial string and
Party B accepts the call

NewCallEvent,
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=0OutBound,
Reason=Direct

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=PROCEEDING
dwParam2=0

dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A

dwCalllID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerlD=A
dwCalledID=B
dwConnectedl D=NP
dwRedirectionlD=NP
dwRedirectionlD=NP

Call StateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,

Called=B,
OrigCalled=B,

LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

lineMakeCall to a Destination that Requires Both FAC and CMC

Preconditions
Party A isldle. Party B requires both a FAC and aCMC.

Actions CTI Message TAPI Messages TAPI Structures
Party A does alineMakeCall() NewCallEvent, LINE_CALLINFO LINECALLINFO (hCall-1)
to Party B CH=C1, hDevice=hCall-1 hLine=A
GCH=G1, dwCallbacklnstance=0 dwCalllD=T1
Calling=A, dwParam1=ORIGIN dwOrigin=OUTBOUND
Called=NP, dwParam2=0 dwReason=DIRECT
OrigCalled=NP, dwParam3=0 dwCallerl D=A
LR=NP, dwCalledID=NP

State=Dialtone,
Origin=0OutBound,
Reason=Direct

LINE_CALLINFO
hDevice=hCall-1
dwcCallbackInstance=0
dwParaml=

REASON, CALLERID
dwParam2=0
dwParam3=0

dwConnectedl D=NP
dwRedirectionlD=NP
dwRedirectionlD=NP

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter 4

Cisco Device Specific Extensions |

|| Message Sequence Charts

Actions CTI Message TAPI Messages TAPI Structures
Party A doesalineMakeCall() |CallStateChangedEvent, LINE_CALLSTATE No change
to Party B (continued) CH=C1, hDevice=hCall-1
State=Dialing, dwCallbacklnstance=0
Cause=CauseNoError, dwParam1=DIALING
Reason=Direct, dwParam2=0
Calling=A, dwParam3=0
Called=NP,
OrigCalled=NP,
LR=NP
Call ToneChangedEvent, LINE_DEVSPECIFIC No change
CH=C1, hDevice=hCall-1
Tone=ZipZip, dwCallbacklnstance=0
Feature=FACCMC, dwParam1=SLDSMT_CALL_
FACRequired=True, TONE_CHANGED
CMCRequired=True dwParam2=CTONE_ZIPZIP
dwParam3=
CZIPZIP_FACREQUIRED,
CZIPZIP_CMCREQUIRED
Party A does alineDial() with |CallToneChangedEvent, LINE_DEVSPECIFIC No change

the FAC in the dial string

CH=C1,
Tone=ZipZip,
Feature=FACCMC,
FACRequired=False,
CMCRequired=True

hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=SLDSMT_CALL_
TONE_CHANGED
dwParam2=CTONE_ZIPZIP
dwParam3=
CZIPZIP_CMCREQUIRED

Party A does alineDial() with
the CMC in the dia string and
Party B accepts the call.

Call StateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A,

Called=B,
OrigCalled=B,

LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=PROCEEDING
dwParam2=0

dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A

dwCalllID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedl D=NP
dwRedirectionlD=NP
dwRedirectionlD=NP

Call StateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,

Called=B,
OrigCalled=B,

LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwcCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter4 Cisco Device Specific Extensions

Message Sequence Charts 1l

Timeout Waiting for FAC or Invalid FAC entered

Preconditions
Party A isldle. Party B requires a FAC.

Note that the scenario is similar if Party B required a CMC instead of a FAC.

Actions CTI Message TAPI Messages TAPI Structures
Party A does alineMakeCall() NewCallEvent, LINE_CALLINFO LINECALLINFO (hCall-1)
to Party B. CH=C1, hDevice=hCall-1 hLine=A
GCH=G1, dwCallbacklnstance=0 dwCalllID=T1
Calling=A, dwParam1=ORIGIN dwOrigin=OUTBOUND
Called=NP, dwParam2=0 dwReason=DIRECT
OrigCalled=NP, dwParam3=0 dwCallerl D=A
LR=NP, dwCalledID=NP

State=Dialtone,
Origin=0OutBound,
Reason=Direct

LINE_CALLINFO
hDevice=hCall-1
dwcCallbackInstance=0

dwConnectedl D=NP
dwRedirectionlD=NP
dwRedirectionlD=NP

dwParam1=
REASON, CALLERID
dwParam2=0
dwParam3=0
Call StateChangedEvent, LINE_CALLSTATE No change
CH=C1, hDevice=hCall-1
State=Dialing, dwCallbacklnstance=0
Cause=CauseNoError, dwParam1=DIALING
Reason=Direct, dwParam2=0
Calling=A, dwParam3=0
Called=NP,
OrigCalled=NP,
LR=NP
Call ToneChangedEvent, LINE_DEVSPECIFIC No change
CH=C1, hDevice=hCall-1
Tone=ZipZip, dwCallbacklnstance=0
Feature=FACCMC, dwParam1=SLDSMT_CALL_
FACRequired=True, TONE_CHANGED
CMCRequired=False dwParam2=CTONE_ZIPZIP
dwParam3=
CZIPZIP_FACREQUIRED
T302 timer times out waiting for |Call StateChangedEvent, LINE_CALLSTATE No change
digits or Party A doesa CH=C1, State=Disconnected, |hDevice=hCall-1
lineDial() with aninvalid FAC. |Cause= dwCallbacklnstance=0
CtiNoRouteToDDestination, dwParam1=DISCONNECTED
Reason=FACCMC, dwParam2=DISCONNECT
Calling=A, Called=NP, MODE_FACCMC!
OrigCalled=NP, LR=NP dwParam3=0
Call StateChangedEvent, LINE_CALLSTATE No change

CH=C1, State=Idle,
Cause=CtiCauseNoError,

hDevice=hCall-1
dwcCallbackInstance=0

Reason=Direct, Calling=A, dwParam1=IDLE
Called=NP, OrigCalled=NP, dwParam2=0

LR=NP dwParam3=0

1. dwParam2 will on be set to DISCONNECTMODE_FACCMC if the extension version on the line has been
set to at least 0x00050000. Otherwise, dwParam2 will be set to DISCONNECTMODE_UNAVAIL.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

[oL-9442-01

Chapter4 Cisco Device Specific Extensions |

|| Message Sequence Charts

Refer / Replaces Scenarios

In-Dialog Refer - Referrer in Cisco Unified CallManager Cluster

CallState/Callinfo CallState/Callinfo CallState/Callinfo
Actions @Referrer (A) @Referree (B) @Refer-to-Target (C)

Referrer (A), Referee (B,) and |A-->B hasacall in connected |A-->B hasacall in connected
Refer-to-Target (C) are present |state. Thecall party information |state. Thecall party information

in Cisco Unified CallManager at A should be { calling=A, at B should be { calling=A,
cluster and CTI is monitoring called=B, LRP=null, called=B, LRP=null,
those lines. origCalled=B, reason=direct} origCalled=B, reason=direct}
TAPI Calinfo TAPI Callinfo
dwCallerlD = A dwCallerlD = A
dwCalledID = B dwCalledID = B
dwRedirectingl D = null dwRedirectingl D = null
dwRedirectionID = null dwRedirectionID = null
dwConnectedID = B dwConnectedID = A
dwReason = Direct dwReason = Direct
dwOrigin =LINECALL dwOrigin = LINECALL
ORIGIN_INTERNAL ORIGIN_INTERNAL
(A) initiates REFER (B) to (C) |A gets LINECALLSTATE_ NewCall Event should be
UNKNOWN | CLDSMT_ {calling=B, called=C, LRP=A,
CALL_WAITING_STATE origCalled=C, reason=REFER}
with extended reason = REFER LINECALLSTATE_OFFERING
TAPI Callinfo TAPI Callinfo
dwCallerlD = A dwCallerlD = B
dwCalediD = B dwCalledID = C

dwRedirectingl D = null
dwRedirectionID = null
dwConnectedID = B
dwReason = Direct
dwOrigin =LINECALL
ORIGIN_INTERNAL

dwRedirectinglD = A
dwRedirectionID = C
dwConnectedID = “"
dwReason =LINECALL
REASON_UNKNOWN with
extended REFER

dwOrigin = LINECALL
ORIGIN_INTERNAL

C answersthe call and Refer is |LINECALLSTATE_IDLE with |CallPartylnfoChangedEvent @ |LINECALLSTATE_CONNEC

successful extended REFER reason B with {calling=B, called=C, TED
LRP:A, origCaIIed=C, TAPI calllnfo
reason=REFER} dwCallerlD =B
TAPI calllnfo dwCalledID =C
dwCalleriD =B dwRedirectingIlD = A
dwCalledID =B dwRedirectionID = C
dwRedirectinglD = A dwConnectedID = B
dwRedirectionID =C dwReason = LINECALL
dwConnectedID = C REASON_UNKNOWN with
dwReason = DIRECT extended REFER
dwOrigin = LINECALL dwOrigin = LINECALL
ORIGIN_INTERNAL ORIGIN_INTERNAL

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4 Cisco Device Specific Extensions

Message Sequence Charts 1l

In-Dialog Refer Where ReferToTarget Redirects the Call in Offering State

CallState/Calllnfo CallState/Calllnfo CallState/Calllnfo
Actions @Referrer (A) @Referree (B) @Refer-to-Target (C)
Referrer (A), Referee (B), and |A-->B hasacall in connected |A-->B hasacall in connected
Refer-to-Target (C) are present |state. Thecall party information | state. Thecall party information
in Cisco Unified CallManager at A should be { calling=A, at B should be { calling=A,
cluster and CTI is monitoring called=B, LRP=null, caled=B, LRP=null,
those lines. origCalled=B, reason=direct} origCalled=B, reason=direct}
TAPI Callnfo TAPI Callnfo
dwCallerlD = A dwCallerlD = A
dwCalledID = B dwCalledID = B
dwRedirectingl D = null dwRedirectingl D = null
dwRedirectionID = null dwRedirectionl D = null
dwConnectedID = B dwConnectedID = A
dwReason = Direct dwReason = Direct
dwOrigin = LINECALL dwOrigin = LINECALL
ORIGIN_INTERNAL ORIGIN_INTERNAL
(A) initiates REFER (B) to (C) |A gets LINECALLSTATE_ B gets CPIC with (calling = B, |NewCallEvent should be
UNKNOWN | CLDSMT_ called = C, ocdpn=C, LRP= A, |{calling=B, called=C, LRP=A,
CALL_WAITING_STATE reason = REFER, call state = origCalled=C, reason=REFER}
with extended reason = REFER |Ringback) LINECALLSTATE OFFERING
TAPI Callnfo TAPI Callnfo TAPI callinfo
dwCallerID = A dwCallerlD = B dwCallerID = B
dwCalledID =B dwCalledID =C dwCalledID = C
dwRedirectingl D = null dwRedirectingIlD = A dwRedirectingl D = A
dwRedirectionlD = null dwRedirectionlD =C dwRedirectionID = C
dwConnectedID = B dwConnectedI D = null dwConnected! D = null
dwReason = Direct dwReason = Direct dwReason = LINECALL
dwOrigin = LINECALL dwOrigin = LINECALL REASON UNKNOWN with
ORIGIN_INTERNAL ORIGIN_INTERNAL extended ﬁEFER
dwOrigin = LINECALL
ORIGIN_INTERNAL
C Redirectsthecall toD in LINECALLSTATE_IDLE with |CallPartyInfoChangedEvent @ |IDLE with reason = Redirect
offering state and D answers extended reason = REFER B with {calling=B, called=D, | tap|LINECALLSTATE IDLE
. LRP= i = -
(REFER considered as rei;n‘i’;;?f;f;"t'}ed < D will get NewCallEvent with
successful when D answers) reason = Redirect call info same
Cdllstate = connected asB'scal info. (calling=B,
TAPI calllnfo called=D, ocdpn=C, LRP=C,
dwCallerlD =B reason = redirect)
dWCa“,Ed”? . Offering/accepted/connected
dwRedirectinglD = C
dwRedirectionID =D
dwConnectedID = D
dwReason = DIRECT
dwOrigin = LINECALL
ORIGIN_INTERNAL

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter4 Cisco Device Specific Extensions |

|| Message Sequence Charts

In-Dialog Refer Where Refer Fails / Refer to Target is Busy

CallState/Callinfo CallState/Callinfo CallState/Callinfo
Actions @Referrer (A) @Referree (B) @Refer-to-Target (C)

Referrer (A), Referee (B,) and |A-->B hasacall in connected |A-->B hasacall in connected
Refer-to-Target (C) are present |state. Thecall party information |state. Thecall party information

in Cisco Unified CallManager at A should be { calling=A, at B should be { calling=A,

cluster and CTI is monitoring called=B, LRP=null, called=B, LRP=null,

those lines. origCalled=B, reason=direct} origCalled=B, reason=direct}
TAPI Callinfo TAPI Callinfo
dwCallerlD = A dwCallerlD = A
dwCalledID = B dwCalledID = B
dwRedirectingl D = null dwRedirectingl D = null
dwRedirectionID = null dwRedirectionID = null
dwConnectedID = B dwConnectedID = A
dwReason = Direct dwReason = Direct
dwOrigin = LINECALL dwOrigin = LINECALL
ORIGIN_INTERNAL ORIGIN_INTERNAL

(A) initiates REFER (B) to (C) |A getsLINECALLSTATE_ No change

UNKNOWN | CLDSMT_
CALL_WAITING_STATEwith
extended reason = REFER

TAPI Callinfo
dwCallerlD = A
dwCalledID =B
dwRedirectingl D = null
dwRedirectionI D = null
dwConnectedID = B
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL

Cisbusy / C does not answer A gets LINECALLSTATE_ If B goes to ringback when call
CONNECTED with extended |is offered to C (C does not
reason = REFER answer finally) it should also
(REFER considered as failed) receive Connected Call State

and CPIC event
TAPI Callnfo

dwCallerlD = A
dwCalledID =B

dwRedirectingl D = null
dwRedirectionID = null
dwConnectedID = A
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter4

Cisco Device Specific Extensions

Out-of-Dialog Refer

Message Sequence Charts 1l

Actions

CallState/Calllnfo
@Referrer (A)

CallState/Calllnfo
@Referree (B)

CallState/Callinfo
@Refer-to-Target (C)

Referrer (A), Referee (B,) and

Refer-to-Target (C) arepresent in

Cisco Unified CallManager
cluster and CTI is monitoring
those lines.

Thereis no preexisting call
between A and B.

Thereis no preexisting call
between A and B.

A initiates REFER B to (C).

B should get NewCallEvent
with call info as{calling=A,
caled=B, LRP=null,
origCalled=B, reason=REFER}

TAPI Callinfo
dwCallerlD = A
dwCalledID = B
dwRedirectingl D = null
dwRedirectionID = null
dwConnectedID = A
dwReason = LINECALL
REASON_ UNKNOWN
with extended REFER
dwOrigin =LINECALL
ORIGIN_EXTERNAL

B answers

Call state = connected (there
will not be media flowing
between A and B when call goes
to connected state)

TAPI Calllnfo (no change)

Cisco Unified CallManager
redirectsthe call to C

CallPartyInfoChangedEvent @
B with {calling=B, called=C,
LRP=A, origCalled=C,
reason=REFER}

TAPI calllnfo
dwCallerlD = B
dwCalledID = B
dwRedirectinglD = A
dwRedirectionID = C
dwConnectedID = C
dwReason = LINECALL
REASON_ UNKNOWN with
extended REFER
dwOrigin = LINECALL
ORIGIN_EXTERNAL

NewCallEvent should be
{calling=B, called=C, LRP=A,
origCalled=C, reason=REFER}
Thisinfo is exactly same as
though caller (A) performed
REDIRECT operation (except
the reason is different here).

TAPI calllnfo
dwCallerlD = B
dwCalledID =C
dwRedirectinglD = A
dwRedirectionID = C
dwConnectedID = B
dwReason = LINECALL
REASON_ UNKNOWN with
extended REFER
dwOrigin = LINECALL
ORIGIN_INTERNAL

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter 4

Cisco Device Specific Extensions |

|| Message Sequence Charts

Invite with Replace for Confirmed Dialog

Preconditions

A, B, and C are inside Cisco Unified CallManager. There is a confirmed dialog between A and B.
C initiates Invite to A with replace B's dialog id

CallState/Calllnfo

CallState/Calllnfo

CallState/Calllnfo

Actions @Referrer (A) @Referree (B) @Refer-to-Target (C)
Confirmed dialog between A and |Call State = connected, Call State = connected
B Caller=A, Caller=A,

Called=B, Called=B,

Connected=B, Connected=A,

Reason =direct, Reason =direct,

gcid = GC1 gcid = GC1

C Invites A by replacing B’s
dialog

NewCall at C gcid = GC2,
reason=REPL ACEs,
Call state = Dialing,

Caller=C,
Called=null,
Reason = REPLACEs
Cisco Unified CallManager GCID Changed to GC2, Call State = IDLE, CPIC changed
joinsA and Cinacall and Reason = REPLACEs extended reason = REPLACEs Caller=C
disconnects call leg @ B CPIC Caller = C, Caled=A,
Called = A, ocdpn = A,
ocdpn = A, LRP=B,
LRP=B Reason=REPLACEs

Reason = REPLACEs
Callstate = connected

TAPI callinfo

caller=C,

called=B,

connected=C,

redirecting=B,

redirection=A,
reason=DIRECT with extended
REPLACEsS,

calllD=GC2

Call State = connected

TAPI callinfo

Caller=C,

Caled=A,

Connected=A,
Redirecting=B,
Redirection=A,
reason=UNKNOWN with
extended REPLACEsS,
callD=GC2

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter4

Cisco Device Specific Extensions

Refer with Replace for All in Cluster

Preconditions
Thereis a confirmed dialog between A and B and A and C.

A initiates Refer to C with replace B's dialog id.

Message Sequence Charts 1l

CallState/Calllnfo

CallState/Calllnfo

CallState/Calllnfo

Actions @Referrer (A) @Referree (B) @Refer-to-Target (C)
dialog between A and B and Call State = onhold, Call State = connected Call State = connected
dialog between A and C GC1, Caller=A, Caller=A,
Caller=A, Called=B, Called=C,
Called=C, Connected=A, Connected=A,
Connected=C, Reason =direct, Reason =direct,
Reason =direct gcid = GC2 gcid = GC1

Call State = connected,
GC2,

Cadller = A,

Cadled =B,
Connected=B,

Reason =direct

A completes Refer to C
replacing A->B’sdialog (B is
refer to target)

From CTI (callState = IDLE
with reason = TRANSFER.)

TAPI call state IDLE with
Reason = DIRECT with
extended reason TRANSFER

GCID changed from
CTI reason = TRANSFER

CPIC Changed from CTI
Caller=B,

Called=C,
Origcalled = C,
LRP=A,
Reason=TRANSFER
TAPI callinfo
Caller=B,

Called=B,
Connected = C,
Redirecting=A,
Redirection=C,

Reason = DIRECT with
extended reason TRANSFER.
Calld=GC1

CPIC Changed from CTI with
Caller=B,

Caled=C,

Origcalled = C,

LRP=A,
Reason=TRANSFER

TAPI callinfo caller=B,
called=C, connected=B,
redirecting=A, redirection=C,
reason=direct with extended
TRANSFER. callld=GC1

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

Chapter 4

Cisco Device Specific Extensions |

|| Message Sequence Charts

Refer with Replace for All in Cluster, Replace Dialog Belongs to Another Station

Preconditions

A is Referrer, D is Referee, and C is Refer-to-Target.

There is a confirmed dialog between A(d1) and B & C(d2) and D.
A initiates Refer to D on (d1) with Replaces (d2).

CallState/Calllnfo

CallState/Calllnfo

CallState/Calllnfo

CallState/Calllnfo

Actions @Referrer (A) @B @Refer-to-Target (C) @Referree (D)

Dialog between A and |Call State = onhold, Call State = connected Call State = connected Call State = connected

BanddialogbetweenC | cqjer=A, Caller=A, Caller=C, Caller=C,

and D Called=B, Called=B, Called=D, Called=D,
Connected=B, Connected=A, Connected=D, Connected=C,
Reason =direct, Reason =direct, Reason =direct, Reason =direct,
gcid=GC1 gcid = GC1 gcid = GC2 gcid = GC2

A initiates RefertoD |From CTI CPIC Changed from CTI |From CTI GCID changed from CTI

on (d1) with Replaces
(d2)

(callState = IDLE with
reason = REFER.)

TAPI call state IDLE with
reason = DIRECT with
extended reason = REFER

Caller=B,

Called=C,
Origcalled = D,
LRP=C,
Reason=REPLACEs

TAPI callinfo
Caller=B,

Called=B,

Connected = D,
Redirecting=C,
Redirection=D,
Reason=DIRECT with
extended REPLACEsS,
Calld=GC1

(callState = IDLE with
reason = REPLACES.)

TAPI call state IDLE with
reason = DIRECT with
extended reason =
REPLACEs

to GC1

CPIC Changed from CTI
with

Caller=B (referee),
Called=D,

Origcalled = D,

LRP=C,
Reason=REPLACEs

TAPI callinfo
caler=B,

called=D,
connected=B,
redirecting=C,
redirection=D,
reason=DIRECT with
extended REPLACEsS,
calld=GC1

3XX scenario

Preconditions
Application is monitoring B.

Actions

@Referrer (A)

CallState/Calllnfo

CallState/Calllnfo
@Referree (B)

CallState/Callinfo
@Refer-to-Target (C)

A callsexternal SIPphonewhich

has CFDUNC set to B

TSPI: LINE_APPNEWCALL

Reason = LINECALL
REASON_REDIRECT

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter4 Cisco Device Specific Extensions

Message Sequence Charts 1l

SRTP Scenario

Media Terminate by Application (open secure CTI port or RP)

¢ Negotiate version

¢ Sends LineOpen with extension version as 0x8007000

¢ Send CciscolLineDevSpecificUserSetSRTPAIgorithmID

¢ Send CCiscoL ineDevSpecificUserControl RT PStream

¢ Now the CTI port or RP is registered as secure port

e Make call from secure IP phone to the CTI port or RP port

e Answer the call from application

e SRTPindication will be reported as LineDevSpecific event

e SRTP key information will be stored in LINECALLINFO::devSpecifc for retrieval

Media Terminate by TSP Wave Driver (open secure CTI port)

¢ Negotiate version

¢ Sends LineOpen with extension version as 0x4007000

¢ Send CciscoLineDevSpecificUserSetSRTPAIgorithmID

¢ Send CciscoLineDevSpecificSendLineOpen

¢ Now the CTI port is registered as secure port

e Make call from secure IP phone to the CTI port

e Answer the call from application

e SRTPindication will be reported as LineDevSpecific event

e SRTP key information will be stored in LINECALLINFO::devSpecifc for retrieval

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter4 Cisco Device Specific Extensions |

|| Message Sequence Charts

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
oL-9442-01 |

CHAPTER

Cisco Unified TAPI Examples

This chapter provides examples that illustrate how to use the Cisco Unified TAPI implementation.
This chapter includes the following subroutines:

e MakeCall
¢ OpenLine

e CloselLine

MakeCall

STDMETHODIMP CTACtrl::MakeCall (BSTR destNumber, long pMakeCallReqgID, long hLine, BSTR user2user, long
translateAddr) {
AFX MANAGE STATE (AfxGetStaticModuleState())

USES_CONVERSION;

tracer->tracef (SDI_LEVEL ENTRY EXIT, "CTACtrl::Makecall %s %d %d %$s %d\n",
T2A ((LPTSTR) destNumber) , pMakeCallReqID, hLine, T2A((LPTSTR)user2user),
translateAddr) ;

//CtPhoneNo m_pno;
CtTranslateOutput to;

//LPCSTR pszTranslatable;
CString sDialable;

CString theDestNumber (destNumber) ;

CtCall* pCall;
CtLine* pLine=CtLine: :FromHandle ((HLINE)hLine) ;

if (pLine==NULL) {
tracer->tracef (SDI_LEVEL ERROR, "CTACtrl::MakeCall : pLine == NULL\n");
return S FALSE;
} else {
pCall=new CtCall (pLine) ;
pCall->AddSink (this) ;

sDialable = theDestNumber;

if (translateAddr)
//m_pno.SetWholePhoneNo ((LPCSTR) theDestNumber) ;
//pszTranslatable = m_pno.GetTranslatable () ;
if (TSUCCEEDED (to.TranslateAddress (pCall->GetLine () ->GetDeviceID(),
(LPCSTR) theDestNumber))) {

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter5 Cisco Unified TAPI Examples |

Il OpenLine

sDialable = to.GetDialableString() ;

}
TRESULT tr = pCall->MakeCall ((LPCSTR)sDialable, 0, this);
if (TPENDING (tr) || TSUCCEEDED (tr))
//GCGC the correct hCall pointer is not being returned yet
if (translateAddr)
Fire MakecallReply (hLine, (long)tr, (long)pCall->GetHandle(),
sDialable.AllocSysString()) ;
else
Fire MakecallReply (hLine, (long)tr, (long)pCall->GetHandle (), destNumber) ;

return S _OK;
} else {
//GCGC delete the call that was created above.
tracer->tracef (SDI_LEVEL ERROR, "CTACtrl::MakeCall : pCall->MakeCall failed\n");
delete pCall;
return S_FALSE;

OpenLine

STDMETHODIMP CTACtrl::OpenLine(long lDeviceID, BSTR lineDirNumber, long lPriviledges,
long lMediaModes, BSTR receiveIPAddress, long lreceivePort) ({
USES_CONVERSION;
tracer->tracef (SDI_LEVEL ENTRY EXIT, "CTACtrl::OpenLine %d %s %d %d %s %d\n",
1DeviceID, T2A((LPTSTR)lineDirNumber), 1lPriviledges, 1lMediaModes,
T2A ((LPTSTR) receiveIPAddress), lreceivePort) ;

int linelID;

TRESULT tr;

CString strReceivelP (receiveIPAddress) ;
CString strRegAddress (lineDirNumber) ;

//bool bTermMedia=((!strReceiveIP.IsEmpty()) && (lreceivePort!=0));

bool bTermMedia=(((1lMediaModes & LINEMEDIAMODE AUTOMATEDVOICE) != 0) &&
(lreceivePort!=0) && (!strReceiveIP.IsEmpty()));

CtLine* pLine;

AFX_MANAGE STATE (AfxGetStaticModuleState())
tracer->tracef (SDI_LEVEL DETAILED, "TAC: --> OpenLine()\n");

if ((lDeviceID<0) && !strcmp((char *)lineDirNumber, "")) {
tracer->tracef (SDI_LEVEL ERROR, "TCD: error - bad device ID and no dirn to open\n") ;
return S FALSE;

}

lineID=1DevicelD;

if (1lDeviceID<0) {
//search for line ID in list of lines.
CtLineDevCaps ldc;
int numLines=::TfxGetNumLines () ;
for (DWORD nLineID = 0; (int)nLineID < numLines; nLineID++) {
if (/*ShouldShowLine (nLineID) &&*/ TSUCCEEDED (ldc.GetDevCaps (nLineID))) {
CtAddressCaps ac;
tracer->tracef (SDI_LEVEL_DETAILED, "CTACtrl::OpenLine
Calling ac.GetAddressCaps %d 0\n", nLinelID) ;
if (TSUCCEEDED (ac.GetAddressCaps (nLineID, 0))) {

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

| Chapter5 Cisco Unified TAPI Examples

OpenLine W

// GCGC only one address supported
CString strCurrAddress (ac.GetAddress()) ;
if (strRegAddress==strCurrAddress)

lineID=nLinelID;
break;

}

} else {
tracer->tracef (SDI_LEVEL ERROR, "TAC: error - GetAddressCaps () failed\n");
}

if (1lDeviceID<0) {
tracer->tracef (SDI_LEVEL_ERROCR,
"TAC: error - could not find dirn %s to open line.\n", (LPCSTR)lineDirNumber) ;
return S_FALSE;

// if we are to do media termination; negotiate the extensions version

DWORD retExtVersion;
if (bTermMedia)
TRESULT tr3;
tracer->tracef (SDI_LEVEL DETAILED,
"TAC: lineNegotiateExtVersion - appHandle = %d, deviceID = %d, API ver = %d,
HiVer = %d, LoVer = %d\n", CtLine::GetAppHandle(), linelD,
CtLine: :GetApiVersion(lineID),
0x80000000 | 0x00010000L,
0x80000000 | 0x00020000L) ;
tr3=::1lineNegotiateExtVersion (CtLine: :GetAppHandle (),
lineID, CtLine::GetApiVersion(lineID),

0x80000000 | 0x00010000L, // TAPI v1.3,
0x80000000 | 0x00020000L,
&retExtVersion) ;

tracer->tracef (SDI_LEVEL DETAILED,
"TAC: lineNegotiateExtVersion returned: %d\n", tr3);

pLine=new CtLine () ;

tr=pLine->Open(lineID, this, 1lPriviledges, 1lMediaModes) ;

if (TSUCCEEDED (tr)) {

if (bTermMedia)
if (retExtVersion==0x10000)

CiscoLineDevSpecificUserControlRTPStream dsucr;
dsucr.m_RecievePort=lreceivePort;
dsucr.m_RecieveIP=::inet_ addr ((LPCSTR)strReceivelP) ;
TRESULT tr2;

tr2=::1lineDevSpecific (pLine->GetHandle(),

0,0, dsucr.lpParams(),dsucr.dwSize()) ;
tracer->tracef (SDI_LEVEL DETAILED,

"TAC: lineDevSpecific returned: %d\n", tr2);

} else {

//GCGC here put in the new calls to set the media types!
CiscoLineDevSpecificUserControlRTPStream2 dsucr;
dsucr.m_RecievePort=lreceivePort;
dsucr.m_RecieveIP=::inet addr ((LPCSTR)strReceivelP) ;
dsucr.m_MediaCapCount=4;

dsucr.m _MediaCaps[0] .MediaPayload=4;
dsucr.m _MediaCaps [0] .MaxFramesPerPacket=30;
dsucr.m _MediaCaps[0] .G723BitRate=0;

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
0L-9442-01 .m

Chapter5 Cisco Unified TAPI Examples |

OpenLine

dsucr.m MediaCaps[1l] .MediaPayload=9;
dsucr.m MediaCaps[1l] .MaxFramesPerPacket=90;
dsucr.m_MediaCaps[1] .G723BitRate=1;

dsucr.m MediaCaps [2] .MediaPayload=9;
dsucr.m MediaCaps [2] .MaxFramesPerPacket=90;
dsucr.m_MediaCaps [2] .G723BitRate=2;
dsucr.m_MediaCaps [3] .MediaPayload=11;
dsucr.m_MediaCaps [3] .MaxFramesPerPacket=90;
dsucr.m _MediaCaps [3] .G723BitRate=0;

TRESULT tr2;

tr2=::lineDevSpecific (pLine->GetHandle (),
0,0, dsucr.lpParams(),dsucr.dwSize()) ;
tracer->tracef (SDI_LEVEL DETAILED,
"TAC: lineDevSpecific returned: %d\n", tr2);

CtAddressCaps ac;
LPCSTR pszAddressName;

(TSUCCEEDED (ac.GetAddressCaps (1ineID, 0))) {
// GCGC only one address supported
pszAddressName = ac.GetAddress() ;

} else {

pszAddressName = NULL;
tracer->tracef (SDI_LEVEL ERROR, "TAC: error - GetAddressCaps() failed.\n");

OpenedLine ((long) pLine->GetHandle (), pszAddressName, O0);

// now let's try to open the associated phone device
// Get the phone from the line

DWORDnPhonelID;

bool b_phoneFound=false;

CtDeviceID did;

if ((m_bUsesPhones) && TSUCCEEDED (did.GetID("tapi/phone", pLine->GetHandle()))) {

nPhoneID = did.GetDeviceID() ;
tracer->tracef (SDI_LEVEL DETAILED,
"TAC: Retrieved phone device %d for line.\n",nPhonelID) ;

// check to see if phone device is already open

long hPhone;
CtPhone* pPhone;
if (!m_deviceID2phone.Lookup ((long)nPhonelD, hPhone)) {
tracer->tracef (SDI_LEVEL_ SIGNIFICANT,
"TAC: phone device not found in open list, opening it...\n");
pPhone=new CtPhone () ;
TRESULT tr_phone;
tr phone=pPhone->Open (nPhonelID, this) ;
if (TSUCCEEDED (tr_phone)) {
: :phoneSetStatusMessages (pPhone->GetHandle (),
PHONESTATE _DISPLAY | PHONESTATE LAMP |
PHONESTATE HANDSETHOOKSWITCH | PHONESTATE HEADSETHOOKSWITCH |
PHONESTATE REINIT | PHONESTATE CAPSCHANGE | PHONESTATE REMOVED,
PHONEBUTTONMODE KEYPAD | PHONEBUTTONMODE FEATURE |
PHONEBUTTONMODE CALL |
PHONEBUTTONMODE LOCAL | PHONEBUTTONMODE DISPLAY,
PHONEBUTTONSTATE_UP | PHONEBUTTONSTATE DOWN) ;

m_phone2line.SetAt ((long)pPhone->GetHandle (), (long)pLine->GetHandle()) ;

m_line2phone.SetAt ((long)pLine->GetHandle (), (long) pPhone->GetHandle ()) ;
m_deviceID2phone.SetAt ((long)nPhonelID, (long) pPhone->GetHandle ()) ;

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Chapter5 Cisco Unified TAPI Examples

CloseLine

m_phoneUseCount . SetAt ((long) pPhone->GetHandle (), 1);
} else {

tracer->tracef (SDI_LEVEL_ERROR,

"TAC: error - phoneOpen failed with code %d\n", tr phone) ;
}
} else {

pPhone=CtPhone: : FromHandle ((HPHONE) hPhone) ;
long theCount;

if (m_phoneUseCount.Lookup ((long)pPhone->GetHandle (), theCount))
m_phoneUseCount .SetAt ((long) pPhone->GetHandle (), theCount+1) ;
else {
//GCGC this would be an error condition!
tracer->tracef (SDI_LEVEL_ERROCR,
"TAC: error - m_phoneUseCount does not contain phone entry.\n");

}
} else {

tracer->tracef (SDI_LEVEL_ERROR,

"TAC: error - could not retrieve PhoneID for line.\n");
}
tracer->tracef (SDI_LEVEL DETAILED, "TAC: <-- OpenLine()\n");
return S_OK;
} else {

tracer->tracef (SDI_LEVEL ERROR, "TAC: error - lineOpen failed: %d\n", tr);
tracer->tracef (SDI_LEVEL DETAILED, "TAC: <-- OpenLine()\n");
OpenLineFailed(tr,0) ;
delete pLine;
return S_FALSE;

Closeline

STDMETHODIMP CTACtrl::CloseLine (long hLine)
AFX_MANAGE_STATE (AfxGetStaticModuleState())
tracer->tracef (SDI_LEVEL ENTRY EXIT, "CTACtrl::CloselLine %d\n", hLine);

CtLine* pLine;
pLine=CtLine: :FromHandle ((HLINE) hLine) ;

if (pLine!=NULL) {
// close the line
pLine->Close () ;
// remove it from the list
delete pLine;
long hPhone;
long theCount;
if ((m_bUsesPhones) && (m_line2phone.Lookup (hLine,hPhone))) {
CtPhone* pPhone=CtPhone: :FromHandle ((HPHONE) hPhone) ;
if (pPhone!=NULL) {
if (m_phoneUseCount.Lookup (hPhone, theCount))
if (theCount>1)
// decrease the number of lines using this phone
m_phoneUseCount . SetAt (hPhone, theCount-1) ;
}
else {
//nobody else is using this phone, so let's remove it.
m_deviceID2phone.RemoveKey ((long) pPhone->GetDevicelID()) ;

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Chapter5 Cisco Unified TAPI Examples |

M CloseLine

m_phone2line.RemoveKey (hPhone) ;
m_phoneUseCount . RemoveKey (hPhone) ;

//now let's close the phone
pPhone->Close () ;
}
}
//either way, remove the map entry from line to phone.
m_line2phone.RemoveKey (hLine) ;

}

return S_OK;

}

else
return S FALSE;

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

Cisco Unified TSP Interfaces

This appendix contains alisting of APIsthat are supported and not supported.

Cisco Unified TAPI Version 2.1 Interfaces

Core Package

Table A-1 lists each TAPI interface

Table A-1 Compliance to TAPI 2.1

Cisco

TAPI
APl/Message/Structure Support |Comments
TAPI Line Functions
lineAccept Yes
lineAddProvider Yes
lineAddToConference Yes
lineAnswer Yes
lineBlindTransfer Yes
lineCallbackFunc Yes
lineClose Yes
lineCompleteCall No
lineCompleteTransfer Yes
lineConfigDialog No
lineConfigDial ogEdit No
lineConfigProvider Yes
lineDeallocateCall Yes
lineDevSpecific Yes
lineDevSpecificFeature No
lineDial Yes

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Appendix A Cisco Unified TSP Interfaces |

| | Cisco Unified TAPI Version 2.1 Interfaces

Table A-1 Compliance to TAPI 2.1 (continued)
Cisco
TAPI
APl/Message/Structure Support |Comments
lineDrop Yes
lineForward Yes
lineGatherDigits No
lineGenerateDigits Yes
lineGenerateTone Yes
lineGetAddressCaps Yes
lineGetAddresslD Yes
lineGetAddressStatus Yes
lineGetAppPriority No
lineGetCalllnfo Yes
lineGetCall Status Yes
lineGetConfRelatedCalls Yes
lineGetCountry No
lineGetDevCaps Yes
lineGetDevConfig No
lineGetlcon No
lineGetID Yes
lineGetLineDevStatus Yes
lineGetMessage Yes
lineGetNewCalls Yes
lineGetNumRings Yes
lineGetProviderList Yes
lineGetRequest Yes
lineGetStatusM essages Yes
lineGetTranslateCaps Yes
lineHandoff Yes
lineHold Yes
linelnitialize Yes
linelnitializeEx Yes
lineM akeCall Yes
lineMonitorDigits Yes
lineMonitorMedia No
lineM onitorTones Yes
lineNegotiateAPlVersion Yes
lineNegotiateExtVersion Yes

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

oL-9442-01 |

| Appendix A Cisco Unified TSP Interfaces

Cisco Unified TAPI Version 2.1 Interfaces 1l

Table A-1 Compliance to TAPI 2.1 (continued)
Cisco
TAPI
APl/Message/Structure Support |Comments
lineOpen Yes
linePark Yes
linePickup No
linePrepareAddToConference Yes
lineRedirect Yes
lineRegisterRequestRecipient Yes
lineReleaseUserUserInfo No
lineRemoveFromConference No
lineRemoveProvider Yes
lineSecureCall No
lineSendUserUserInfo No
lineSetAppPriority Yes
lineSetA ppSpecific No
lineSetCallData No
lineSetCallParams No
lineSetCallPrivilege Yes
lineSetCallQualityOf Service No
lineSetCall Treatment No
lineSetCurrentL ocation No
lineSetDevConfig No
lineSetLineDevStatus No
lineSetM ediaControl No
lineSetM ediaM ode No
lineSetNumRings Yes
lineSetStatusM essages Yes
lineSetTerminal No
lineSetTollList Yes
lineSetupConference Yes
lineSetupTransfer Yes
lineShutdown Yes
lineSwapHold No
lineTranslateAddress Yes
lineTranslateDialog Yes
lineUncompl eteCall No
lineUnhold Yes

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Appendix A Cisco Unified TSP Interfaces |

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

Cisco Unified TAPI Version 2.1 Interfaces

Table A-1 Compliance to TAPI 2.1 (continued)

Cisco

TAPI
APl/Message/Structure Support |Comments
lineUnpark Yes

TAPI Line Messages

LINE_ADDRESSSTATE Yes
LINE_APPNEWCALL Yes
LINE_CALLINFO Yes
LINE _CALLSTATE Yes
LINE_CLOSE Yes
LINE_CREATE Yes
LINE_DEVSPECIFIC Yes
LINE_DEV SPECIFICFEATURE No
LINE_GATHERDIGITS Yes
LINE_GENERATE Yes
LINE_LINEDEVSTATE Yes
LINE_MONITORDIGITS Yes
LINE_MONITORMEDIA No
LINE_MONITORTONE Yes
LINE_ REMOVE Yes
LINE_REPLY Yes
LINE_REQUEST Yes
TAPI Line Structures

LINEADDRESSCAPS Yes
LINEADDRESSSTATUS Yes
LINEAPPINFO Yes
LINECALLINFO Yes
LINECALLLIST Yes
LINECALLPARAMS Yes
LINECALLSTATUS Yes
LINECALLTREATMENTENTRY No
LINECARDENTRY Yes
LINECOUNTRYENTRY Yes
LINECOUNTRYLIST Yes
LINEDEVCAPS Yes
LINEDEVSTATUS Yes
LINEDIALPARAMS No
LINEEXTENSIONID Yes

oL-9442-01 |

| Appendix A Cisco Unified TSP Interfaces

Cisco Unified TAPI Version 2.1 Interfaces 1l

Table A-1 Compliance to TAPI 2.1 (continued)
Cisco
TAPI
APl/Message/Structure Support |Comments
LINEFORWARD Yes
LINEFORWARDLIST Yes
LINEGENERATETONE Yes
LINEINITIALIZEEXPARAMS Yes
LINELOCATIONENTRY Yes
LINEMEDIACONTROLCALLSTATE No
LINEMEDIACONTROLDIGIT No
LINEMEDIACONTROLMEDIA No
LINEMEDIACONTROLTONE No
LINEMESSAGE Yes
LINEMONITORTONE Yes
LINEPROVIDERENTRY Yes
LINEPROVIDERLIST Yes
LINEREQMEDIACALL No
LINEREQMAKECALL Yes
LINETERMCAPS No
LINETRANSLATECAPS Yes
LINETRANSLATEOUTPUT Yes
TAPI Phone Functions
phoneCallbackFunc Yes
phoneClose Yes
phoneConfigDialog No
phoneDevSpecific Yes
phoneGetButtonlnfo No
phoneGetData No
phoneGetDevCaps Yes
phoneGetDisplay Yes
phoneGetGain No
phoneGetHookSwitch No
phoneGetlcon No
phoneGetID No
phoneGetLamp No
phoneGetM essage Yes
phoneGetRing Yes
phoneGetStatus No

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Appendix A Cisco Unified TSP Interfaces |

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

Cisco Unified TAPI Version 2.1 Interfaces

Table A-1 Compliance to TAPI 2.1 (continued)
Cisco
TAPI
APl/Message/Structure Support |Comments
phoneGetStatusM essages Yes
phoneGetVolume No
phonelnitialize Yes
phonel nitializeEx Yes
phoneNegotiateAPlVersion Yes
phoneNegotiateExtVersion No
phoneOpen Yes
phoneSetButtonl nfo No
phoneSetData No
phoneSetDisplay Yes
phoneSetGain No
phoneSetHookSwitch No
phoneSetLamp No
phoneSetRing No
phoneSetStatusM essages Yes
phoneSetVolume No
phoneShutdown Yes
TAPI Phone Messages
PHONE_BUTTON Yes
PHONE_CLOSE Yes
PHONE_CREATE Yes
PHONE_DEVSPECIFIC No
PHONE_REMOVE Yes
PHONE_REPLY Yes
PHONE_STATE Yes
TAPI Phone Structures
PHONEBUTTONINFO No
PHONECAPS Yes
PHONEEXTENSIONID No
PHONEINITIALIZEEXPARAMS Yes
PHONEMESSAGE Yes
PHONESTATUS No
VARSTRING Yes
TAPI Assisted Telephony Functions
tapi GetLocationlnfo ‘Yes

oL-9442-01 |

| Appendix A Cisco Unified TSP Interfaces

Cisco Unified TAPI Version 2.1 Interfaces 1l

Table A-1 Compliance to TAPI 2.1 (continued)
Cisco
TAPI
APl/Message/Structure Support |Comments
tapi RequestDrop No
tapi RequestM akeCall Yes
tapi RequestM ediaCall No
TAPI Call Center Functions
lineAgentSpecific No
lineGetAgentActivityList No
lineGetAgentCaps No
lineGetAgentGroupL.ist No
lineGetAgentStatus No
lineProxyMessage No
lineProxyResponse No
lineSetAgentActivity No
lineSetAgentGroup No
lineSetAgentState No
TAPI Call Center Messages
LINE_AGENTSPECIFIC No
LINE_AGENTSTATUS No
LINE_PROXYREQUEST No
TAPI Call Center Structures
LINEAGENTACTIVITYENTRY No
LINEAGENTACTIVITYLIST No
LINEAGENTCAPS No
LINEAGENTGROUPENTRY No
LINEAGENTGROUPLIST No
LINEAGENTSTATUS No
LINEPROXY REQUEST No
Wave Functions
wavel nAddBuffer Yes
wavelnClose Yes
wavelnGetDevCaps No
wavel nGetErrorText No
wavelnGetlD Yes
wavelnGetNumDevs No
wavel nGetPosition Yes
wavelnM essage No

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 .m

Appendix A Cisco Unified TSP Interfaces |

r Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

Cisco Unified TAPI Version 2.1 Interfaces

Table A-1 Compliance to TAPI 2.1 (continued)
Cisco
TAPI
APl/Message/Structure Support |Comments
wavelnOpen Yes
wavel nPrepareHeader Yes
wavelnProc No
wavel nReset Yes
wavelnStart Yes
wavel nStop No
wavel nUnprepareHeader Yes
waveOutBreaklL oop No
waveOutClose Yes
waveOutGetDevCaps Yes
waveOutGetError Text No
waveOutGetlD Yes
waveOutGetNumDevs No
waveOutGetPitch No
waveOutGetPlaybackRate No
waveOutGetPosition No
waveOutGetVolume No
waveOutM essage No
waveOutOpen Yes
waveOutPause No
waveOutPrepareHeader Yes
waveOutProc No
waveOutReset Yes
waveOutRestart No
waveOutSetPitch No
waveOutSetPlaybackRate No
waveOutSetVolume No
waveOutUnprepareHeader Yes
waveOutWrite Yes

oL-9442-01 |

INDEX

A

AV Audio32.dll 3-148

managing 2-20
reinstalling 2-20
removing 2-19

setting up the client-server configuration 2-17

Button ID values, defined by TAPI 3-135
button press monitoring 3-134

uninstalling 2-23

uninstalling the wave driver 2-18
upgrading 2-20

verifying theinstallation 2-16
classes

C

call control 1-2
CCiscoLineDevSpecificSetStatusMsgs 4-16
CiscoLineDevSpecificMsgWaiting class 4-12, 4-13
Cisco Unified CallManager JTAPI
classes and interfaces A-1
Cisco Unified TSP
activating 2-3
configuration settings
Advanced tab (figure) 2-12
CTI Manager tab (figure) 2-7
CTI Manager tab (table) 2-8
general tab (figure) 2-5
Language tab (figure) 2-13
overview 2-5
Trace tab (figure) 2-10
user tab (figure) 2-6
user tab (table) 2-7
Wave tab (figure) 2-8
Wavetab (table) 2-9
configuring 2-4
installing 2-2
installing the wave driver 2-13

Audio Stream Control 4-14
CCiscoLineDevSpecificJoin 4-23
CCiscoLineDevSpecificPortRegistrationPerCall 4-18
CCiscoLineDevSpecificRedirectResetOrigCalled 4-18
CCiscoLineDevSpecificRedirectSetOrigCalled 4-22
CiscoLineDevSpecific 4-10

CiscoL ineDevSpecificUserControl RTPStream 4-14
Join 4-23

Message Waiting 4-12

Message Waiting Dirn 4-13

Port Registration per Call 4-18

Redirect Reset Original Called ID 4-18

Redirect Set Original Called ID 4-22

Set Status Messages 4-16

Setting RTP Params for Call 4-21
Swap-Hold/SetupTransfer 4-17

CloseLine 5-5

Cluster Support 1-3

Code samples

CloseLine 5-5

MakeCall 5-1
OpenLine 5-2
configuring

Cisco Unified TSP 2-4

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

M Index

client-server configuration using
Cisco Unified TSP 2-17

TSP 2-4

CTI

call survivability 1-5

Cisco TAPI application failure 1-5
Cisco Unified CallManager failure 1-4
manager 1-3

manager failure 1-5

port 1-2

route point 1-3

D

directory change notification handling 1-8

examples

CloseLine 5-5

MakeCall 5-1

OpenLine 5-2

Extension Mobility 1-8
extension mobility support 1-8

extensions

Cisco line device specific TAPI functions 4-1
Cisco phone device specific TAPI functions 4-31

LINEDEVCAPS 4-3
structures 4-3

F

fault tolerance 1-3
first party call control 1-2
flags for opening the device 3-151

Formats supported by TAPI wavedriver 3-156

forwarding enhancement 1-6
functions

phone functions 3-115

L

line device structures
LINEADDRESSCAPS 3-72
LINEADDRESSSTATUS 3-719
LINEAPPINFO 3-80
LINECALLINFO 3-81
LINECALLLIST 3-87
LINECALLPARAMS 3-88
LINECALLSTATUS 3-89
LINECARDENTRY 3-92
LINECOUNTRYENTRY 3-94
LINECOUNTRYLIST 3-95
LINEDEVCAPS 3-96
LINEDEVSTATUS 3-100
LINEEXTENSIONID 3-101
LINEFORWARD 3-101
LINEFORWARDLIST 3-104
LINEGENERATETONE 3-104
LINEINITIALIZEEXPARAMS 3-105
LINELOCATIONENTRY 3-106
LINEMESSAGE 3-108
LINEMONITORTONE 3-109
LINEPROVIDERENTRY 3-109
LINEPROVIDERLIST 3-110
LINEREQMAKECALL 3-111
LINETRANSLATECAPS 3-112
LINETRANSLATEOUTPUT 3-113
line functions

lineAccept 3-4
lineAddProvider 3-4
lineAddToConference 3-5
lineAnswer 3-6
lineBlindTransfer 3-6
lineCallbackFunc 3-7
lineClose 3-8
lineCompleteTransfer 3-9
lineConfigProvider 3-10
lineDeallocateCall 3-11

[l Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

lineDevSpecific 3-11
lineDial 3-12

lineDrop 3-13

lineForward 3-14
lineGenerateDigits 3-16
lineGenerateTone 3-17
lineGetAddressCaps 3-18
lineGetAddressID 3-19
lineGetAddressStatus 3-20
lineGetCalllnfo 3-20
lineGetCallStatus 3-21
lineGetConfRelatedCalls 3-21
lineGetDevCaps 3-21, 3-22
lineGetID 3-23
lineGetLineDevStatus 3-24
lineGetMessage 3-25
lineGetNewCalls 3-26
lineGetNumRings 3-27
lineGetProviderList 3-28
lineGetRequest 3-28
lineGetStatusMessages 3-29
lineGetTranslateCaps 3-30
lineHandoff 3-31

lineHold 3-32

linelnitialize 3-33
linelnitializeEx 3-34
lineMakeCall 3-35
lineMonitorDigits 3-36
lineMonitorTones 3-36
lineNegotiateAPIVersion 3-37
lineNegotiateExtVersion 3-38
lineOpen 3-39

linePark 3-40
linePrepareAddToConference 3-41
lineRedirect 3-43
lineRegisterRequestRecipient 3-44
lineRemoveProvider 3-45
lineSetAppPriority 3-45
lineSetCallPrivilege 3-47

lineSetNumRings 3-47
lineSetStatusM essages 3-48
lineSetTollList 3-50
lineSetupConference 3-51
lineSetupTransfer 3-52
lineShutdown 3-52
lineTranslateAddress 3-53
lineTranslateDialog 3-54
lineUnhold 3-56

lineUnpark 3-56

line messages

LINE_ ADDRESSSTATE 3-57
LINE_ APPNEWCALL 3-59
LINE_CALLINFO 3-59
LINE _CALLSTATE 3-60
LINE_CLOSE 3-63

LINE_ CREATE 3-64

LINE _DEVSPECIFIC 3-65
LINE_GENERATE 3-65
LINE LINEDEVSTATE 3-66
LINE_MONITORTDIGITS 3-67
LINE_MONITORTONE 3-68
LINE_ REMOVE 3-69
LINE_ REPLY 3-69
LINE_REQUEST 3-70
lines

line functions 3-2

Index W

MakeCall 5-1
messages
device specific messages 4-35
LINE_DEVSPECIFIC 4-35
line messages 3-57
phone messages 3-133
monitoring call park directory numbers 1-9
monitor privilege 3-128
multiple Cisco Unified TSPs 1-9

[oL-9442-01

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0 g

M Index

new and changed information xv

o

OpenLine 5-2
owner privilege 3-128

P

Phone button values 3-135

phone functions
phoneCallbackFunc 3-115
phoneClose 3-116
phoneDevSpecific 3-117
phoneGetDevCaps 3-117
phoneGetDisplay 3-118
phoneGetLamp 3-119
phoneGetMessage 3-120
phoneGetRing 3-121
phoneGetStatusM essages 3-122
phonelnitialize 3-124
phonelnitializeEx 3-125

phoneNegotiateAPIVersion 3-127

phoneOpen 3-128
phoneSetDisplay 3-129
phoneSetLamp 3-130
phoneSetStatusM essages 3-131
phoneShutdown 3-132
phone messages
PHONE BUTTON 3-134
PHONE_CLOSE 3-136
PHONE_CREATE 3-137
PHONE_REMOVE 3-137
PHONE_REPLY 3-138
PHONE_STATE 3-139

PHONEPRIVILEGE_MONITOR 3-129
PHONEPRIVILEGE_OWNER 3-129

Phone status changes 3-131

phone structure
PHONECAPS 3-141

phone structures
PHONEINITIALIZEEXPARAMS 3-142
PHONEMESSAGE 3-143

Ring modes supported 3-121

S

Status changes, phone devices 3-131
structures

line device 3-71

phone structures 3-141
supported device types 1-5

T

TAPI Wave Driver, formats supported 3-151

third party call control 1-2

TSP

activating 2-3

configuration settings
Advanced tab (figure) 2-12
CTI Manager tab (figure) 2-7
CTI Manager tab (table) 2-8
general tab (figure) 2-5
Language tab (figure) 2-13
overview 2-5
Trace tab (figure) 2-10
user tab (figure) 2-6
user tab (table) 2-7
Wave tab (figure) 2-8
Wave tab (table) 2-9
configuring 2-4

[l Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

0L-9442-01 |

Index W

installing 2-2 X
installing the wave driver 2-13

managing 2-20 xsi object pass through 1-15
reinstalling 2-20

removing 2-19

setting up client-server configuration 2-17

uninstalling 2-23

uninstalling the wave driver 2-18

upgrading 2-20

verifying theinstallation 2-16

)]

wave driver

instaling 2-13

saving information 2-15
uninstalling 2-18

verifying wave driver exists 2-16
wave functions

wavelnAddBuffer 3-148
wavelnClose 3-149
wavelnGetID 3-149
wavelnGetPosition 3-150
wavelnOpen 3-150
wavelnPrepareHeader 3-152
wavelnReset 3-152
wavelnStart 3-153
wavelnUnprepareHeader 3-153
waveOutClose 3-154
waveOutGetDevCaps 3-154
waveOutGetID 3-155
waveOutGetPosition 3-155
waveOutOpen 3-156
waveOutPrepareHeader 3-157
waveOutReset 3-158
waveOutUnprepareHeader 3-158
waveOutWrite 3-159

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0
[oL-9442-01 ..m

M Index

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

	Contents
	Preface
	Introduction
	Purpose
	Audience
	Organization
	New and Changed Information
	Related Documentation
	Required Software
	Conventions
	Obtaining Documentation
	Cisco.com
	Documentation DVD
	Ordering Documentation

	Documentation Feedback
	Cisco Product Security Overview
	Reporting Security Problems in Cisco Products

	Obtaining Technical Assistance
	Cisco Technical Support Website
	Submitting a Service Request
	Definitions of Service Request Severity

	Obtaining Additional Publications and Information

	Overview
	Cisco�Unified�TSP 5.0 Functions
	Call Control
	First-Party Call Control
	Third-Party Call Control

	CTI Port
	Dynamic Port Registration
	CTI Route Point
	Media Termination at Route Point
	CTI Manager (Cluster Support)
	Cisco�Unified�CallManager Failure
	Call Survivability
	CTI Manager Failure
	Cisco�Unified�TAPI Application Failure

	Supported Device Types
	Forwarding
	Redirect and Blind Transfer
	lineRedirect
	lineDevSpecific – Redirect Reset Original Called ID
	lineDevSpecific – Redirect Set Original Called ID
	lineDevSpecific – Redirect FAC CMC
	lineBlindTransfer
	lineDevSpecific - BlindTransfer FAC CMC

	Extension Mobility Support
	Directory Change Notification Handling
	Monitoring Call Park Directory Numbers
	Multiple Cisco�Unified�TSPs
	Multiple Calls per Line Appearance
	Maximum Number of Calls
	Busy Trigger
	CFNA Timer

	Shared Line Appearance
	Select Calls
	Direct Transfer
	Join
	Privacy Release
	Barge and cBarge
	Cisco�Unified�TSP Auto Update Functionality
	QoS Support
	Presentation Indication (PI)
	Compatibility
	Unicode Support
	TLS Support
	SRTP Support
	FAC/CMC Support
	CTI Port Third Party Monitoring Port
	CTI Device/Line Restriction
	XSI Object Pass Through

	Cisco�Unified�TAPI Installation
	Introduction
	Installing the Cisco�Unified�TSP
	Activating the Cisco�Unified�TSP
	Configuring the Cisco�Unified�TSP
	Cisco�Unified�TSP Configuration Settings
	General Tab
	User Tab
	CTI Manager Tab
	Wave Tab
	Trace Tab
	Advanced Tab
	Language Tab

	Installing the Wave Driver
	Saving Wave Driver Information
	Verifying the Wave Driver Exists
	Verifying the Cisco�Unified�TSP Installation
	Setting Up Client-Server Configuration
	Uninstalling the Wave Driver
	Removing the Cisco�Unified�TSP
	Managing the Cisco�Unified�TSP
	Reinstalling the Cisco�Unified�TSP
	Upgrading the Cisco�Unified�TSP
	Auto Update for Cisco�Unified�TSP Upgrades
	AutoInstall Behavior

	Uninstalling the Cisco�Unified�TSP

	Cisco�Unified�TAPI Implementation
	TAPI Line Functions
	lineAccept
	Description
	Function Details
	Parameters

	lineAddProvider
	Description
	Function Details
	Parameters
	Return Values

	lineAddToConference
	Description
	Function Details
	Parameters

	lineAnswer
	Description
	Function Details
	Parameters

	lineBlindTransfer
	Description
	Function Details
	Parameters

	lineCallbackFunc
	Description
	Function Details
	Parameters
	Further Details

	lineClose
	Description
	Function Details
	Parameter

	lineCompleteTransfer
	Description
	Function Details
	Parameters

	lineConfigProvider
	Description
	Function Details
	Parameters
	Return Values

	lineDeallocateCall
	Description
	Function Details
	Parameter

	lineDevSpecific
	Description
	Function Details
	Parameters

	lineDial
	Description
	Function Details
	Parameters

	lineDrop
	Description
	Function Details
	Parameters

	lineForward
	Description
	Function Details
	Parameters
	Return Values

	lineGenerateDigits
	Description
	Function Details
	Parameters

	lineGenerateTone
	Description
	Function Details
	Parameters

	lineGetAddressCaps
	Description
	Function Details
	Parameters

	lineGetAddressID
	Description
	Function Details
	Parameters

	lineGetAddressStatus
	Description
	Function Details
	Parameters

	lineGetCallInfo
	Description
	Function Details
	Parameters

	lineGetCallStatus
	Description
	Function Details
	Parameters

	lineGetConfRelatedCalls
	Description
	Function Details
	Parameters
	Return Values

	lineGetDevCaps
	Description
	Function Details
	Parameters

	lineGetID
	Description
	Function Details
	Parameters

	lineGetLineDevStatus
	Description
	Function Details
	Parameters

	lineGetMessage
	Description
	Function Details
	Parameters
	Return Values

	lineGetNewCalls
	Description
	Function Details
	Parameters
	Return Values

	lineGetNumRings
	Description
	Function Details
	Parameters
	Return Values

	lineGetProviderList
	Description
	Function Details
	Parameters
	Return Values

	lineGetRequest
	Description
	Function Details
	Parameters
	Return Values

	lineGetStatusMessages
	Description
	Function Details
	Parameters
	Return Values

	lineGetTranslateCaps
	Description
	Function Details
	Parameters
	Return Values

	lineHandoff
	Description
	Function Details
	Parameters
	Return Values

	lineHold
	Description
	Function Details
	Parameter

	lineInitialize
	Description
	Function Details
	Parameters
	Return Values

	lineInitializeEx
	Description
	Function Details
	Parameters

	lineMakeCall
	Description
	Function Details
	Parameters

	lineMonitorDigits
	Description
	Function Details
	Parameters

	lineMonitorTones
	Description
	Function Details
	Parameters

	lineNegotiateAPIVersion
	Description
	Function Details
	Parameters

	lineNegotiateExtVersion
	Description
	Function Details
	Parameters

	lineOpen
	Description
	Function Details
	Parameters

	linePark
	Description
	Function Details
	Parameters

	linePrepareAddToConference
	Description
	Function Details
	Parameters
	Return Values

	lineRedirect
	Description
	Function Details
	Parameters

	lineRegisterRequestRecipient
	Description
	Function Details
	Parameters
	Return Values

	lineRemoveProvider
	Description
	Function Details
	Parameters
	Return Values

	lineSetAppPriority
	Description
	Function Details
	Parameters
	Return Values

	lineSetCallPrivilege
	Description
	Function Details
	Parameters
	Return Values

	lineSetNumRings
	Description
	Function Details
	Parameters
	Return Values

	lineSetStatusMessages
	Description
	Function Details
	Parameters

	lineSetTollList
	Description
	Function Details
	Parameters
	Return Values

	lineSetupConference
	Description
	Function Details
	Parameters

	lineSetupTransfer
	Description
	Function Details
	Parameters

	lineShutdown
	Description
	Function Details
	Parameters

	lineTranslateAddress
	Description
	Function Details
	Parameters
	Return Values

	lineTranslateDialog
	Description
	Function Details
	Parameters
	Return Values

	lineUnhold
	Description
	Function Details
	Parameters

	lineUnpark
	Description
	Function Details
	Parameters

	TAPI Line Messages
	LINE_ADDRESSSTATE
	Description
	Function Details
	Parameters

	LINE_APPNEWCALL
	Description
	Function Details
	Parameters

	LINE_CALLINFO
	Description
	Function Details
	Parameters

	LINE_CALLSTATE
	Description
	Function Details
	Parameters

	LINE_CLOSE
	Description
	Function Details
	Parameters

	LINE_CREATE
	Description
	Function Details
	Parameters

	LINE_DEVSPECIFIC
	Description
	Function Details
	Parameters

	LINE_GENERATE
	Description
	Function Details
	Parameters

	LINE_LINEDEVSTATE
	Description
	Function Details
	Parameters

	LINE_MONITORDIGITS
	Description
	Function Details
	Parameters

	LINE_MONITORTONE
	Description
	Function Details
	Parameters

	LINE_REMOVE
	Description
	Function Details
	Parameters

	LINE_REPLY
	Description
	Function Details
	Parameters

	LINE_REQUEST
	Description
	Function Details
	Parameters

	TAPI Line Device Structures
	LINEADDRESSCAPS
	LINEADDRESSSTATUS
	LINEAPPINFO
	Description
	Structure Details

	LINECALLINFO
	LINECALLLIST
	Description
	Structure Details

	LINECALLPARAMS
	LINECALLSTATUS
	LINECARDENTRY
	Description
	Structure Details
	Members

	LINECOUNTRYENTRY
	Description
	Structure Details

	LINECOUNTRYLIST
	Description
	Structure Details

	LINEDEVCAPS
	LINEDEVSTATUS
	LINEEXTENSIONID
	LINEFORWARD
	Description
	Structure Details

	LINEFORWARDLIST
	Description
	Structure Details

	LINEGENERATETONE
	Description
	Structure Details

	LINEINITIALIZEEXPARAMS
	Description
	Structure Details
	Further Details

	LINELOCATIONENTRY
	Description
	Structure Details

	LINEMESSAGE
	Description
	Structure Details
	Further Details

	LINEMONITORTONE
	Description
	Structure Details

	LINEPROVIDERENTRY
	Description
	Structure Details

	LINEPROVIDERLIST
	Description
	Structure Details

	LINEREQMAKECALL
	Description
	Structure Details

	LINETRANSLATECAPS
	Description
	Structure Details

	LINETRANSLATEOUTPUT
	Description
	Structure Details

	TAPI Phone Functions
	phoneCallbackFunc
	Description
	Function Details
	Parameters
	Further Details

	phoneClose
	Description
	Function Details
	Parameter

	phoneDevSpecific
	Description
	Function Details
	Parameter

	phoneGetDevCaps
	Description
	Function Details
	Parameters

	phoneGetDisplay
	Description
	Function Details
	Parameters

	phoneGetLamp
	Description
	Function Details
	Parameters

	phoneGetMessage
	Description
	Function Details
	Parameters
	Return Values

	phoneGetRing
	Description
	Function Details
	Parameters

	phoneGetStatus
	Description
	Function Details
	Parameters
	Return Values

	phoneGetStatusMessages
	Description
	Function Details
	Parameters
	Return Values

	phoneInitialize
	Description
	Function Details
	Parameters
	Return Values

	phoneInitializeEx
	Description
	Function Details
	Parameters
	Return Values

	phoneNegotiateAPIVersion
	Description
	Function Details
	Parameters
	Return Values

	phoneOpen
	Description
	Function Details
	Parameters

	phoneSetDisplay
	Description
	Function Details
	Parameters

	phoneSetLamp
	Description
	Function Details
	Parameters

	phoneSetStatusMessages
	Description
	Function Details
	Parameters

	phoneShutdown
	Description
	Function Details
	Parameter
	Return Values

	TAPI Phone Messages
	PHONE_BUTTON
	Description
	Function Details
	Parameters

	PHONE_CLOSE
	Description
	Function Details
	Parameters

	PHONE_CREATE
	Description
	Function Details
	Parameters

	PHONE_REMOVE
	Description
	Function Details
	Parameters

	PHONE_REPLY
	Description
	Function Details
	Parameters

	PHONE_STATE
	Description
	Function Details
	Parameters

	TAPI Phone Structures
	PHONECAPS
	Members

	PHONEINITIALIZEEXPARAMS
	Description
	Structure Details
	Members

	PHONEMESSAGE
	Description
	Structure Details
	Members
	Further Details

	PHONESTATUS
	Description
	Structure Details
	Members

	VARSTRING
	Description
	Structure Details
	Members

	Wave
	waveInAddBuffer
	Description
	Function Details
	Parameters

	waveInClose
	Description
	Function Details
	Parameter

	waveInGetID
	Description
	Function Details
	Parameters

	waveInGetPosition
	Description
	Function Details
	Parameters

	waveInOpen
	Description
	Function Details
	Parameters

	waveInPrepareHeader
	Description
	Function Details
	Parameters

	waveInReset
	Description
	Function Details
	Parameter

	waveInStart
	Description
	Function Details
	Parameter

	waveInUnprepareHeader
	Description
	Function Details
	Parameters

	waveOutClose
	Description
	Function Details
	Parameter

	waveOutGetDevCaps
	Description
	Function Details
	Parameters

	waveOutGetID
	Description
	Function Details
	Parameters

	waveOutGetPosition
	Description
	Function Details
	Parameters

	waveOutOpen
	Description
	Function Details
	Parameters

	waveOutPrepareHeader
	Description
	Function Details
	Parameters

	waveOutReset
	Description
	Function Details
	Parameter

	waveOutUnprepareHeader
	Description
	Function Details
	Parameters

	waveOutWrite
	Description
	Function Details
	Parameters

	Cisco Device Specific Extensions
	Cisco Line Device Specific Extensions
	Structures
	LINEDEVCAPS Device Specific Extensions

	LINECALLINFO Device Specific Extensions
	Description
	Detail
	Parameters

	LINEDEVSTATUS Device Specific Extensions
	Description
	Detail
	Parameters

	CCiscoLineDevSpecific
	Description
	Header File
	Class Detail
	Functions
	Parameter
	Subclasses
	Enumeration

	Message Waiting
	Description
	Class Detail
	Parameters

	Message Waiting Dirn
	Description
	Class Detail
	Parameters

	Audio Stream Control
	Description
	Class Detail
	Parameters

	Set Status Messages
	Description
	Class Detail
	Parameters

	Swap-Hold/SetupTransfer
	Description
	Class Details
	Parameters

	Redirect Reset Original Called ID
	Description
	Class Details
	Parameters

	Port Registration per Call
	Description
	Class Details
	Parameters

	Setting RTP Parameters for Call
	Description
	Class Details
	Parameters

	Redirect Set Original Called ID
	Description
	Class Details
	Parameters

	Join
	Description
	Class Details
	Parameters

	Set User SRTP Algorithm IDs
	Description
	Class Detail
	Supported Algorithm Constants
	Parameters

	Explicit Acquire
	Description
	Class Details
	Parameters

	Explicit De-Acquire
	Description
	Class Details
	Parameters

	Redirect FAC CMC
	Description
	Class Detail
	Parameters

	Blind Transfer FAC CMC
	Description
	Class Detail
	Parameters

	CTI Port Third Party Monitor
	Description
	Class Detail
	Parameters

	Send Line Open
	Description
	Class Detail

	Cisco Phone Device Specific Extensions
	CCiscoPhoneDevSpecific
	Description
	Header File
	Class Detail
	Functions
	Parameter
	Subclasses
	Enumeration

	CCiscoPhoneDevSpecificDataPassThrough
	Description
	Class Detail
	Parameters

	CCiscoPhoneDevSpecificAcquire
	Description
	Class Details
	Parameters

	CCiscoPhoneDevSpecificDeacquire
	Description
	Class Details
	Parameters

	CCiscoPhoneDevSpecificGetRTPSnapshot
	Description
	Class Details
	Parameters

	Messages
	Description
	Start Transmission Events
	Start Reception Events
	Stop Transmission Events
	Stop Reception Events
	Existing Call Events
	Open Logical Channel Events
	LINECALLINFO_DEVSPECIFICDATA Events
	Call Tone Changed Events

	Message Sequence Charts
	Manual Outbound Call
	Blind Transfer
	Redirect Set Original Called (TxToVM)
	Shared Line Scenarios
	Initiate a New Call Manually

	Presentation Indication
	Make a Call Through Translation Pattern
	Blind Transfer Through Translation Pattern

	Forced Authorization and Client Matter Code Scenarios
	Manual Call to a Destination that Requires a FAC
	Manual Call to a Destination that Requires both FAC and CMC
	lineMakeCall to a Destination that Requires a FAC
	lineMakeCall to a Destination that Requires Both FAC and CMC
	Timeout Waiting for FAC or Invalid FAC entered

	Refer / Replaces Scenarios
	In-Dialog Refer - Referrer in Cisco�Unified�CallManager Cluster
	In-Dialog Refer Where ReferToTarget Redirects the Call in Offering State
	In-Dialog Refer Where Refer Fails / Refer to Target is Busy
	Out-of-Dialog Refer
	Invite with Replace for Confirmed Dialog
	Refer with Replace for All in Cluster
	Refer with Replace for All in Cluster, Replace Dialog Belongs to Another Station

	3XX scenario
	SRTP Scenario
	Media Terminate by Application (open secure CTI port or RP)
	Media Terminate by TSP Wave Driver (open secure CTI port)

	Cisco�Unified�TAPI Examples
	MakeCall
	OpenLine
	CloseLine

	Cisco�Unified�TSP Interfaces
	Cisco�Unified�TAPI Version 2.1 Interfaces
	Core Package

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (U.S. Prepress Defaults)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

