

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 526-4100

Cisco Unified TAPI Developers Guide for
Cisco Unified CallManager Release 5.0

Text Part Number: OL-9442-01

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco Unified TAPI Developers Guide for Cisco Unified CallManager Release 5.0
Copyright © 2000-2006, Cisco Systems, Inc.
All rights reserved.

CSP, CCVP, the Cisco Square Bridge logo, Follow Me Browsing, and StackWise are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn, and
Quick Study are service marks of Cisco Systems, Inc.; and Access Registrar, Aironet, BPX, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, Cisco, the Cisco Certified
nternetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Enterprise/Solver, EtherChannel, EtherFast,
therSwitch, Fast Step, FormShare, GigaDrive, GigaStack, HomeLink, Internet Quotient, IOS, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, LightStream,
inksys, MeetingPlace, MGX, the Networkers logo, Networking Academy, Network Registrar, Packet, PIX, Post-Routing, Pre-Routing, ProConnect, RateMUX, ScriptShare,
lideCast, SMARTnet, The Fastest Way to Increase Your Internet Quotient, and TransPath are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States
nd certain other countries.

ll other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship
etween Cisco and any other company. (0601R)

Cisco Unified TA
OL-9442-01
C O N T E N T S
Preface xiii

Introduction xiii

Purpose xiv

Audience xiv

Organization xiv

New and Changed Information xv

Related Documentation xv

Required Software xv

Conventions xv

Obtaining Documentation xvi

Cisco.com xvii

Documentation DVD xvii

Ordering Documentation xvii

Documentation Feedback xviii

Cisco Product Security Overview xviii

Reporting Security Problems in Cisco Products xviii

Obtaining Technical Assistance xix

Cisco Technical Support Website xix

Submitting a Service Request xx

Definitions of Service Request Severity xx

Obtaining Additional Publications and Information xx

C H A P T E R 1 Overview 1-1

Cisco Unified TSP 5.0 Functions 1-1

Call Control 1-2

First-Party Call Control 1-2

Third-Party Call Control 1-2

CTI Port 1-2

Dynamic Port Registration 1-3

CTI Route Point 1-3

Media Termination at Route Point 1-3

CTI Manager (Cluster Support) 1-3

Cisco Unified CallManager Failure 1-4
iii
PI Developers Guide for Cisco Unified CallManager 5.0

Contents
Call Survivability 1-5

CTI Manager Failure 1-5

Cisco Unified TAPI Application Failure 1-5

Supported Device Types 1-5

Forwarding 1-6

Redirect and Blind Transfer 1-6

lineRedirect 1-6

lineDevSpecific – Redirect Reset Original Called ID 1-6

lineDevSpecific – Redirect Set Original Called ID 1-7

lineDevSpecific – Redirect FAC CMC 1-7

lineBlindTransfer 1-7

lineDevSpecific - BlindTransfer FAC CMC 1-7

Extension Mobility Support 1-8

Directory Change Notification Handling 1-8

Monitoring Call Park Directory Numbers 1-9

Multiple Cisco Unified TSPs 1-9

Multiple Calls per Line Appearance 1-10

Maximum Number of Calls 1-10

Busy Trigger 1-10

CFNA Timer 1-10

Shared Line Appearance 1-10

Select Calls 1-11

Direct Transfer 1-11

Join 1-11

Privacy Release 1-12

Barge and cBarge 1-12

Cisco Unified TSP Auto Update Functionality 1-12

QoS Support 1-13

Presentation Indication (PI) 1-13

Compatibility 1-13

Unicode Support 1-14

TLS Support 1-14

SRTP Support 1-14

FAC/CMC Support 1-14

CTI Port Third Party Monitoring Port 1-15

CTI Device/Line Restriction 1-15

XSI Object Pass Through 1-15
iv
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Contents
C H A P T E R 2 Cisco Unified TAPI Installation 2-1

Introduction 2-1

Installing the Cisco Unified TSP 2-2

Activating the Cisco Unified TSP 2-3

Configuring the Cisco Unified TSP 2-4

Cisco Unified TSP Configuration Settings 2-5

General Tab 2-5

User Tab 2-6

CTI Manager Tab 2-7

Wave Tab 2-8

Trace Tab 2-10

Advanced Tab 2-12

Language Tab 2-13

Installing the Wave Driver 2-13

Saving Wave Driver Information 2-15

Verifying the Wave Driver Exists 2-16

Verifying the Cisco Unified TSP Installation 2-16

Setting Up Client-Server Configuration 2-17

Uninstalling the Wave Driver 2-18

Removing the Cisco Unified TSP 2-19

Managing the Cisco Unified TSP 2-20

Reinstalling the Cisco Unified TSP 2-20

Upgrading the Cisco Unified TSP 2-20

Auto Update for Cisco Unified TSP Upgrades 2-21

Uninstalling the Cisco Unified TSP 2-23

C H A P T E R 3 Cisco Unified TAPI Implementation 3-1

TAPI Line Functions 3-2

lineAccept 3-4

lineAddProvider 3-4

lineAddToConference 3-5

lineAnswer 3-6

lineBlindTransfer 3-6

lineCallbackFunc 3-7

lineClose 3-8

lineCompleteTransfer 3-9

lineConfigProvider 3-10

lineDeallocateCall 3-11
v
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Contents
lineDevSpecific 3-11

lineDial 3-12

lineDrop 3-13

lineForward 3-14

lineGenerateDigits 3-16

lineGenerateTone 3-17

lineGetAddressCaps 3-18

lineGetAddressID 3-19

lineGetAddressStatus 3-20

lineGetCallInfo 3-20

lineGetCallStatus 3-21

lineGetConfRelatedCalls 3-21

lineGetDevCaps 3-22

lineGetID 3-23

lineGetLineDevStatus 3-24

lineGetMessage 3-25

lineGetNewCalls 3-26

lineGetNumRings 3-27

lineGetProviderList 3-28

lineGetRequest 3-28

lineGetStatusMessages 3-29

lineGetTranslateCaps 3-30

lineHandoff 3-31

lineHold 3-32

lineInitialize 3-33

lineInitializeEx 3-34

lineMakeCall 3-35

lineMonitorDigits 3-36

lineMonitorTones 3-36

lineNegotiateAPIVersion 3-37

lineNegotiateExtVersion 3-38

lineOpen 3-39

linePark 3-40

linePrepareAddToConference 3-41

lineRedirect 3-43

lineRegisterRequestRecipient 3-44

lineRemoveProvider 3-45

lineSetAppPriority 3-45

lineSetCallPrivilege 3-47

lineSetNumRings 3-47
vi
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Contents
lineSetStatusMessages 3-48

lineSetTollList 3-50

lineSetupConference 3-51

lineSetupTransfer 3-52

lineShutdown 3-52

lineTranslateAddress 3-53

lineTranslateDialog 3-54

lineUnhold 3-56

lineUnpark 3-56

TAPI Line Messages 3-57

LINE_ADDRESSSTATE 3-57

LINE_APPNEWCALL 3-59

LINE_CALLINFO 3-59

LINE_CALLSTATE 3-60

LINE_CLOSE 3-63

LINE_CREATE 3-64

LINE_DEVSPECIFIC 3-65

LINE_GENERATE 3-65

LINE_LINEDEVSTATE 3-66

LINE_MONITORDIGITS 3-67

LINE_MONITORTONE 3-68

LINE_REMOVE 3-69

LINE_REPLY 3-69

LINE_REQUEST 3-70

TAPI Line Device Structures 3-71

LINEADDRESSCAPS 3-72

LINEADDRESSSTATUS 3-79

LINEAPPINFO 3-80

LINECALLINFO 3-81

LINECALLLIST 3-87

LINECALLPARAMS 3-88

LINECALLSTATUS 3-89

LINECARDENTRY 3-92

LINECOUNTRYENTRY 3-94

LINECOUNTRYLIST 3-95

LINEDEVCAPS 3-96

LINEDEVSTATUS 3-100

LINEEXTENSIONID 3-101

LINEFORWARD 3-101

LINEFORWARDLIST 3-104
vii
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Contents
LINEGENERATETONE 3-104

LINEINITIALIZEEXPARAMS 3-105

LINELOCATIONENTRY 3-106

LINEMESSAGE 3-108

LINEMONITORTONE 3-109

LINEPROVIDERENTRY 3-109

LINEPROVIDERLIST 3-110

LINEREQMAKECALL 3-111

LINETRANSLATECAPS 3-112

LINETRANSLATEOUTPUT 3-113

TAPI Phone Functions 3-115

phoneCallbackFunc 3-115

phoneClose 3-116

phoneDevSpecific 3-117

phoneGetDevCaps 3-117

phoneGetDisplay 3-118

phoneGetLamp 3-119

phoneGetMessage 3-120

phoneGetRing 3-121

phoneGetStatus 3-122

phoneGetStatusMessages 3-122

phoneInitialize 3-124

phoneInitializeEx 3-125

phoneNegotiateAPIVersion 3-127

phoneOpen 3-128

phoneSetDisplay 3-129

phoneSetLamp 3-130

phoneSetStatusMessages 3-131

phoneShutdown 3-132

TAPI Phone Messages 3-133

PHONE_BUTTON 3-134

PHONE_CLOSE 3-136

PHONE_CREATE 3-137

PHONE_REMOVE 3-137

PHONE_REPLY 3-138

PHONE_STATE 3-139

TAPI Phone Structures 3-141

PHONECAPS 3-141

PHONEINITIALIZEEXPARAMS 3-142
viii
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Contents
PHONEMESSAGE 3-143

PHONESTATUS 3-144

VARSTRING 3-147

Wave 3-148

waveInAddBuffer 3-148

waveInClose 3-149

waveInGetID 3-149

waveInGetPosition 3-150

waveInOpen 3-150

waveInPrepareHeader 3-152

waveInReset 3-152

waveInStart 3-153

waveInUnprepareHeader 3-153

waveOutClose 3-154

waveOutGetDevCaps 3-154

waveOutGetID 3-155

waveOutGetPosition 3-155

waveOutOpen 3-156

waveOutPrepareHeader 3-157

waveOutReset 3-158

waveOutUnprepareHeader 3-158

waveOutWrite 3-159

C H A P T E R 4 Cisco Device Specific Extensions 4-1

Cisco Line Device Specific Extensions 4-1

Structures 4-3

LINECALLINFO Device Specific Extensions 4-4

LINEDEVSTATUS Device Specific Extensions 4-9

CCiscoLineDevSpecific 4-10

Message Waiting 4-12

Message Waiting Dirn 4-13

Audio Stream Control 4-14

Set Status Messages 4-16

Swap-Hold/SetupTransfer 4-17

Redirect Reset Original Called ID 4-18

Port Registration per Call 4-18

Setting RTP Parameters for Call 4-21

Redirect Set Original Called ID 4-22

Join 4-23
ix
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Contents
Set User SRTP Algorithm IDs 4-24

Explicit Acquire 4-25

Explicit De-Acquire 4-26

Redirect FAC CMC 4-27

Blind Transfer FAC CMC 4-28

CTI Port Third Party Monitor 4-29

Send Line Open 4-30

Cisco Phone Device Specific Extensions 4-31

CCiscoPhoneDevSpecific 4-31

CCiscoPhoneDevSpecificDataPassThrough 4-32

CCiscoPhoneDevSpecificAcquire 4-33

CCiscoPhoneDevSpecificDeacquire 4-34

CCiscoPhoneDevSpecificGetRTPSnapshot 4-35

Messages 4-35

Description 4-35

Start Transmission Events 4-36

Start Reception Events 4-37

Stop Transmission Events 4-38

Stop Reception Events 4-38

Existing Call Events 4-38

Open Logical Channel Events 4-39

LINECALLINFO_DEVSPECIFICDATA Events 4-39

Call Tone Changed Events 4-40

Message Sequence Charts 4-41

Manual Outbound Call 4-41

Blind Transfer 4-43

Redirect Set Original Called (TxToVM) 4-44

Shared Line Scenarios 4-45

Presentation Indication 4-48

Forced Authorization and Client Matter Code Scenarios 4-53

Refer / Replaces Scenarios 4-60

3XX scenario 4-66

SRTP Scenario 4-67

C H A P T E R 5 Cisco Unified TAPI Examples 5-1

MakeCall 5-1

OpenLine 5-2

CloseLine 5-5
x
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Contents
A P P E N D I X A Cisco Unified TSP Interfaces A-1

Cisco Unified TAPI Version 2.1 Interfaces A-1

Core Package A-1

I N D E X
xi
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Contents
xii
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Preface

This section introduces the Cisco Unified Telephony Application Programmer’s Interface (TAPI) for
Service Providers implementation, describes the purpose of this document, and outlines the required
software. The section includes the following topics:

• Introduction

• Purpose

• Audience

• Organization

• New and Changed Information

• Related Documentation

• Required Software

• Conventions

• Obtaining Documentation

• Documentation Feedback

• Cisco Product Security Overview

• Obtaining Technical Assistance

• Obtaining Additional Publications and Information

Introduction
The Cisco Unified Telephony Application Programmer’s Interface (TAPI) comprises the set of classes
and principles of operation that constitute a telephony application programming interface. The
Cisco Unified TAPI implementations provide the interface between computer telephony applications
and telephony services. The Cisco Unified CallManager includes a TAPI Service Provider
(Cisco Unified TSP), which allows developers to create customized IP telephony applications for Cisco
users; for example, voice messaging with other TAPI compliant systems, automatic call distribution
(ACD), and caller ID screen popups. Cisco Unified TSP enables the Cisco Unified Communications
system to understand commands from the user-level application such as Cisco SoftPhone via the
operating system.

The Cisco Unified TAPI implementation uses the Microsoft TAPI v2.1 specification and supplies
extension functions to support Cisco Unified Communications Solutions.
xiii
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Preface
 Purpose
To enable a Cisco Unified TAPI-based solution, you must have the following:

• TAPI support/service that is running on the operating system

• A TAPI-based software application

• A Cisco Unified Communications phone system

Note The system does not support using Cisco TAPI 2.1 TSP via the TAPI 3.x compatibility layer.

Purpose
This document describes the Cisco Unified TAPI implementation by detailing the functions that
comprise the implementation software and illustrating how to use these functions to create applications
that support the Cisco Unified Communications hardware, software, and processes. You should use this
document with the Cisco Unified CallManager manuals to develop applications.

A primary goal of a standard Application Programming Interface (API) such as TAPI specifies providing
an unchanging programming interface under which varied implementations may stand. Cisco's goal in
implementing TAPI for the Cisco Unified CallManager platform remains to conform as closely as
possible to the TAPI specification, while providing extensions that enhance TAPI and expose the
advanced features of Cisco Unified CallManager to applications.

As new versions of Cisco Unified CallManager and Cisco Unified TSP are released, variances in the
API should be minor and should tend in the direction of compliance. Cisco stays committed to
maintaining its API extensions with the same stability and reliability, though additional extensions may
be provided as new Cisco Unified CallManager features become available.

Audience
Cisco intends this document to be for use by telephony software engineers who are developing Cisco
telephony applications that require TAPI. This document assumes that the engineer is familiar with both
the C or C++ languages and the Microsoft TAPI specification.

Organization

Chapter Description

Chapter 1, “Overview” Outlines key concepts for Cisco Unified TAPI and
ists all functions available in the implementation.

Chapter 2, “Cisco Unified TAPI Installation” Provides installation procedures for
Cisco Unified TAPI and Cisco Unified TSP.

Chapter 3, “Cisco Unified TAPI
Implementation”

Describes the supported functions in the Cisco
implementation of standard Microsoft TAPI v2.1.

Chapter 4, “Cisco Device Specific Extensions” Describes the functions that comprise the Cisco
hardware-specific implementation classes.

Chapter 5, “Cisco Unified TAPI Examples” Provides examples illustrating the use of the
Cisco Unified TAPI implementation.

Appendix A, “Cisco Unified TSP Interfaces” List APIs that are supported or not supported.
xiv
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Preface
 New and Changed Information
New and Changed Information
New features and/or changes for Cisco Unified TAPI or Cisco Unified TAPI Service Provider (TSP) that
are pertinent to a specified release of Cisco Unified CallManager are described in the Release Notes for
that release.

This document contains the cumulative definition of the interface, not just the new information for the
current release.

Related Documentation
For more information about TAPI specifications, creating an application to use TAPI, or TAPI
administration, see

• Microsoft TAPI 2.1 Features:
http://www.microsoft.com/ntserver/techresources/commnet/tele/tapi21.asp

• Getting Started with Windows Telephony
http://www.microsoft.com/NTServer/commserv/deployment/planguides/getstartedtele.asp

• Windows Telephony API (TAPI)
http://www.microsoft.com/NTServer/commserv/exec/overview/tapiabout.asp

• Creating Next Generation Telephony Applications:
http://www.microsoft.com/NTServer/commserv/techdetails/prodarch/tapi21wp.asp

• The Microsoft Telephony Application Programming Interface (TAPI) Programmer's Reference

• “For the Telephony API, Press 1; For Unimodem, Press 2; or Stay on the Line” —A paper on TAPI
by Hiroo Umeno a COMM and TAPI specialist at Microsoft.

• “TAPI 2.1 Microsoft TAPI Client Management”

• “TAPI 2.1 Administration Tool”

Required Software
Cisco Unified TSP requires the following software:

• Cisco Unified CallManager version 5.0 (or later) on the Cisco Unified CallManager server

• Microsoft Internet Explorer 4.01 (or later)

Conventions
This document uses the following conventions:

Convention Description

boldface font Commands and keywords are in boldface.

italic font Arguments for which you supply values are in italics.

[] Elements in square brackets are optional.
xv
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

http://www.microsoft.com/ntserver/techresources/commnet/tele/tapi21.asp
http://www.microsoft.com/NTServer/commserv/deployment/planguides/getstartedtele.asp
http://www.microsoft.com/NTServer/commserv/exec/overview/tapiabout.asp
http://www.microsoft.com/NTServer/commserv/techdetails/prodarch/tapi21wp.asp

Preface
 Obtaining Documentation
Notes use the following conventions:

Note Means reader take note. Notes contain helpful suggestions or references to material not covered in the
publication.

Tip Means the following information might help you solve a problem.

Timesaver Means the described action saves time. You can save time by performing the action described in the
paragraph.

Obtaining Documentation
Cisco documentation and additional literature are available on Cisco.com. Cisco also provides several
ways to obtain technical assistance and other technical resources. These sections explain how to obtain
technical information from Cisco Systems.

{ x | y | z } Alternative keywords are grouped in braces and separated
by vertical bars.

[x | y | z] Optional alternative keywords are grouped in brackets and
separated by vertical bars.

string An unquoted set of characters. Do not use quotation marks
around the string or the string will include the quotation
marks.

screen font Terminal sessions and information that the system displays
are in screen font.

boldface screen
font

Information you must enter is in boldface screen font.

italic screen font Arguments for which you supply values are in italic screen
font.

This pointer highlights an important line of text
in an example.

^ The symbol ^ represents the key labeled Control—for
example, the key combination ̂ D in a screen display means
hold down the Control key while you press the D key.

< > Nonprinting characters, such as passwords are in angle
brackets.

Convention Description
xvi
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Preface
 Obtaining Documentation
Cisco.com
You can access the most current Cisco documentation at this URL:

http://www.cisco.com/univercd/home/home.htm

You can access the Cisco website at this URL:

http://www.cisco.com

You can access international Cisco websites at this URL:

http://www.cisco.com/public/countries_languages.shtml

Documentation DVD
Cisco documentation and additional literature are available in a Documentation DVD package, which
may have shipped with your product. The Documentation DVD is updated regularly and may be more
current than printed documentation. The Documentation DVD package is available as a single unit.

Registered Cisco.com users (Cisco direct customers) can order a Cisco Documentation DVD (product
number DOC-DOCDVD=) from the Ordering tool or Cisco Marketplace.

Cisco Ordering tool:

http://www.cisco.com/en/US/partner/ordering/

Cisco Marketplace:

http://www.cisco.com/go/marketplace/

Ordering Documentation
You can find instructions for ordering documentation at this URL:

http://www.cisco.com/univercd/cc/td/doc/es_inpck/pdi.htm

You can order Cisco documentation in these ways:

• Registered Cisco.com users (Cisco direct customers) can order Cisco product documentation from
the Ordering tool:

http://www.cisco.com/en/US/partner/ordering/

• Nonregistered Cisco.com users can order documentation through a local account representative by
calling Cisco Systems Corporate Headquarters (California, USA) at 408 526-7208 or, elsewhere in
North America, by calling 1 800 553-NETS (6387).
xvii
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

http://www.cisco.com/univercd/home/home.htm
http://www.cisco.com
http://www.cisco.com/public/countries_languages.shtml
http://www.cisco.com/en/US/partner/ordering/
http://www.cisco.com/go/marketplace/
http://www.cisco.com/univercd/cc/td/doc/es_inpck/pdi.htm
http://www.cisco.com/en/US/partner/ordering/

Preface
 Documentation Feedback
Documentation Feedback
You can send comments about technical documentation to bug-doc@cisco.com.

You can submit comments by using the response card (if present) behind the front cover of your
document or by writing to the following address:

Cisco Systems
Attn: Customer Document Ordering
170 West Tasman Drive
San Jose, CA 95134-9883

We appreciate your comments.

Cisco Product Security Overview
Cisco provides a free online Security Vulnerability Policy portal at this URL:

http://www.cisco.com/en/US/products/products_security_vulnerability_policy.html

From this site, you can perform these tasks:

• Report security vulnerabilities in Cisco products.

• Obtain assistance with security incidents that involve Cisco products.

• Register to receive security information from Cisco.

A current list of security advisories and notices for Cisco products is available at this URL:

http://www.cisco.com/go/psirt

If you prefer to see advisories and notices as they are updated in real time, you can access a Product
Security Incident Response Team Really Simple Syndication (PSIRT RSS) feed from this URL:

http://www.cisco.com/en/US/products/products_psirt_rss_feed.html

This product contains cryptographic features and is subject to United States and local country laws
governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply
third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors
and users are responsible for compliance with U.S. and local country laws. By using this product you
agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local
laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at:
http://www.cisco.com/wwl/export/crypto/tool/stqrg.html.

If you require further assistance please contact us by sending email to export@cisco.com.

Reporting Security Problems in Cisco Products
Cisco is committed to delivering secure products. We test our products internally before we release them,
and we strive to correct all vulnerabilities quickly. If you think that you might have identified a
vulnerability in a Cisco product, contact PSIRT:

• Emergencies — security-alert@cisco.com

• Nonemergencies— psirt@cisco.com
xviii
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

http://www.cisco.com/en/US/products/products_security_vulnerability_policy.html
http://www.cisco.com/go/psirt
http://www.cisco.com/en/US/products/products_psirt_rss_feed.html
mailto:security-alert@cisco.com
mailto:psirt@cisco.com
http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

Preface
 Obtaining Technical Assistance
Tip We encourage you to use Pretty Good Privacy (PGP) or a compatible product to encrypt any sensitive
information that you send to Cisco. PSIRT can work from encrypted information that is compatible with
PGP versions 2.x through 8.x.

Never use a revoked or an expired encryption key. The correct public key to use in your correspondence
with PSIRT is the one that has the most recent creation date in this public key server list:

http://pgp.mit.edu:11371/pks/lookup?search=psirt%40cisco.com&op=index&exact=on

In an emergency, you can also reach PSIRT by telephone:

• 1 877 228-7302

• 1 408 525-6532

Obtaining Technical Assistance
For all customers, partners, resellers, and distributors who hold valid Cisco service contracts, Cisco
Technical Support provides 24-hour-a-day, award-winning technical assistance. The Cisco Technical
Support Website on Cisco.com features extensive online support resources. In addition, Cisco Technical
Assistance Center (TAC) engineers provide telephone support. If you do not hold a valid Cisco service
contract, contact your reseller.

Cisco Technical Support Website
The Cisco Technical Support Website provides online documents and tools for troubleshooting and
resolving technical issues with Cisco products and technologies. The website is available 24 hours a day,
365 days a year, at this URL:

http://www.cisco.com/techsupport

Access to all tools on the Cisco Technical Support Website requires a Cisco.com user ID and password.
If you have a valid service contract but do not have a user ID or password, you can register at this URL:

http://tools.cisco.com/RPF/register/register.do

Note Use the Cisco Product Identification (CPI) tool to locate your product serial number before submitting
a web or phone request for service. You can access the CPI tool from the Cisco Technical Support
Website by clicking the Tools & Resources link under Documentation & Tools. Choose Cisco Product
Identification Tool from the Alphabetical Index drop-down list, or click the Cisco Product
Identification Tool link under Alerts & RMAs. The CPI tool offers three search options: by product ID
or model name; by tree view; or for certain products, by copying and pasting show command output.
Search results show an illustration of your product with the serial number label location highlighted.
Locate the serial number label on your product and record the information before placing a service call.
xix
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

mailto:psirt@cisco.com
http://pgp.mit.edu:11371/pks/lookup?search=psirt%40cisco.com&op=index&exact=on
http://www.cisco.com/techsupport
http://tools.cisco.com/RPF/register/register.do

Preface
 Obtaining Additional Publications and Information
Submitting a Service Request
Using the online TAC Service Request Tool is the fastest way to open S3 and S4 service requests. (S3
and S4 service requests are those in which your network is minimally impaired or for which you require
product information.) After you describe your situation, the TAC Service Request Tool provides
recommended solutions. If your issue is not resolved using the recommended resources, your service
request is assigned to a Cisco TAC engineer. The TAC Service Request Tool is located at this URL:

http://www.cisco.com/techsupport/servicerequest

For S1 or S2 service requests or if you do not have Internet access, contact the Cisco TAC by telephone.
(S1 or S2 service requests are those in which your production network is down or severely degraded.)
Cisco TAC engineers are assigned immediately to S1 and S2 service requests to help keep your business
operations running smoothly.

To open a service request by telephone, use one of the following numbers:

Asia-Pacific: +61 2 8446 7411 (Australia: 1 800 805 227)
EMEA: +32 2 704 55 55
USA: 1 800 553-2447

For a complete list of Cisco TAC contacts, go to this URL:

http://www.cisco.com/techsupport/contacts

Definitions of Service Request Severity
To ensure that all service requests are reported in a standard format, Cisco has established severity
definitions.

Severity 1 (S1)—Your network is “down,” or there is a critical impact to your business operations. You
and Cisco will commit all necessary resources around the clock to resolve the situation.

Severity 2 (S2)—Operation of an existing network is severely degraded, or significant aspects of your
business operation are negatively affected by inadequate performance of Cisco products. You and Cisco
will commit full-time resources during normal business hours to resolve the situation.

Severity 3 (S3)—Operational performance of your network is impaired, but most business operations
remain functional. You and Cisco will commit resources during normal business hours to restore service
to satisfactory levels.

Severity 4 (S4)—You require information or assistance with Cisco product capabilities, installation, or
configuration. There is little or no effect on your business operations.

Obtaining Additional Publications and Information
Information about Cisco products, technologies, and network solutions is available from various online
and printed sources.

• Cisco Marketplace provides a variety of Cisco books, reference guides, and logo merchandise. Visit
Cisco Marketplace, the company store, at this URL:

http://www.cisco.com/go/marketplace/
xx
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

http://www.cisco.com/techsupport/servicerequest
http://www.cisco.com/techsupport/contacts
http://www.cisco.com/go/marketplace/

Preface
 Obtaining Additional Publications and Information
• Cisco Press publishes a wide range of general networking, training and certification titles. Both new
and experienced users will benefit from these publications. For current Cisco Press titles and other
information, go to Cisco Press at this URL:

http://www.ciscopress.com

• Packet magazine is the Cisco Systems technical user magazine for maximizing Internet and
networking investments. Each quarter, Packet delivers coverage of the latest industry trends,
technology breakthroughs, and Cisco products and solutions, as well as network deployment and
troubleshooting tips, configuration examples, customer case studies, certification and training
information, and links to scores of in-depth online resources. You can access Packet magazine at:

http://www.cisco.com/packet

• iQ Magazine is the quarterly publication from Cisco Systems designed to help growing companies
learn how they can use technology to increase revenue, streamline their business, and expand
services. The publication identifies the challenges facing these companies and the technologies to
help solve them, using real-world case studies and business strategies to help readers make sound
technology investment decisions. You can access iQ Magazine at this URL:

http://www.cisco.com/go/iqmagazine

• Internet Protocol Journal is a quarterly journal published by Cisco Systems for engineering
professionals involved in designing, developing, and operating public and private internets and
intranets. You can access the Internet Protocol Journal at this URL:

http://www.cisco.com/ipj

• World-class networking training is available from Cisco. You can view current offerings at
this URL:

http://www.cisco.com/en/US/learning/index.html
xxi
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

http://www.cisco.com/go/marketplace/
http://www.ciscopress.com
http://www.cisco.com/packet
http://www.cisco.com/go/iqmagazine
http://www.cisco.com/ipj
http://www.cisco.com/en/US/learning/index.html

Preface
 Obtaining Additional Publications and Information
xxii
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Cisco Unified TAPI Developers G
OL-9442-01
C H A P T E R 1

Overview

This chapter outlines the key concepts that are involved in using Cisco Unified TAPI service provider
(Cisco Unified TSP) and lists the functions available in the Cisco Unified CallManager Release 5.0
implementation. The Cisco Unified TAPI service provider shipped with Cisco Unified CallManager
Release 5.0 is TAPI version 2.1.

Cisco Unified TSP 5.0 Functions
The following list includes all the functions that are available in the Cisco TSP implementation for
Cisco Unified CallManager Release 5.0:

• Call Control

• CTI Port

• Dynamic Port Registration

• CTI Route Point

• Media Termination at Route Point

• CTI Manager (Cluster Support)

• Supported Device Types

• Forwarding

• Redirect and Blind Transfer

• Extension Mobility Support

• Directory Change Notification Handling

• Monitoring Call Park Directory Numbers

• Multiple Cisco Unified TSPs

• Multiple Calls per Line Appearance

• Shared Line Appearance

• Select Calls

• Direct Transfer

• Join

• Privacy Release

• Barge and cBarge
1-1
uide for Cisco Unified CallManager 5.0

Chapter 1 Overview
 Call Control
• Cisco Unified TSP Auto Update Functionality

• QoS Support

• Presentation Indication (PI)

• Compatibility

• Unicode Support

• TLS Support

• SRTP Support

• FAC/CMC Support

• CTI Port Third Party Monitoring Port

• CTI Device/Line Restriction

• XSI Object Pass Through

Call Control
You can configure Cisco Unified TSP to provide first- or third-party call control.

First-Party Call Control
In first-party call control, the application terminates the audio stream. Ordinarily, this occurs using the
Cisco wave driver. However, if you want the application to control the audio stream instead of the wave
driver, use the Cisco Device Specific extensions.

Third-Party Call Control
In third-party call control, the control of an audio stream terminating device is not “local” to the
Cisco Unified CallManager. In such cases, the controller might be the physical IP phone on your desk
or a group of IP phones for which your application is responsible.

CTI Port
For first-party call control, a CTI port device must exist in the Cisco Unified CallManager. Because each
port can only have one active audio stream at a time, most configurations only need one line per port.

A CTI port device does not actually exist in the system until you run a TAPI application and a line on
the port device is opened requesting LINEMEDIAMODE_AUTOMATEDVOICE and
LINEMEDIAMODE_INTERACTIVEVOICE. Until the port is opened, anyone calling the directory
number associated with that CTI port device receives a busy or reorder tone.

The IP address and UDP port number is either specified statically (the same IP address and UDP port
number is used for every call) or dynamically. By default, CTI Ports use static registration.
1-2
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 1 Overview
 Dynamic Port Registration
Dynamic Port Registration
The purpose of the Dynamic Port Registration feature is to allow applications to specify the IP address
and UDP port number on a call-by-call basis. Currently, the IP address and UDP port number are
specified when a CTI Port registers and is static through the life of the registration of the CTI Port. When
media is requested to be established to the CTI Port, the same static IP address and UDP port number is
used for every call.

An application that wishes to use Dynamic Port Registration must specify the IP address and UDP port
number on a call before invoking any features on the call. If the feature is invoked before the IP address
and UDP port number are set, the feature will fail and the call state will be set depending on when the
media timeout occurs.

CTI Route Point
You can use Cisco Unified TAPI to control CTI route points. CTI route points allow Cisco Unified TAPI
applications to redirect incoming calls with an infinite queue depth. This allows incoming calls to avoid
busy signals.

CTI route point devices have an address capability flag of LINEADDRCAPFLAGS_ROUTEPOINT.
When your application opens a line of this type, it can handle any incoming call by disconnecting,
accepting, or redirecting the call to some other directory number. The basis for redirection decisions can
be caller ID information, time of day, or other information that is available to the program.

Media Termination at Route Point
The purpose of the Media Termination at Route Point feature is to allow applications to terminate media
at route points. This feature enables applications to pass the IP address and port number where they want
the call at the route point to have media established.

Following are the features supported at route points:

• Answer

• Multiple active calls

• Redirect

• Hold

• UnHold

• Blind Transfer

• DTMF Digits

• Tones

CTI Manager (Cluster Support)
The CTI Manager, along with the Cisco Unified TSP, provide an abstraction of the
Cisco Unified CallManager cluster that allows TAPI applications to access Cisco Unified CallManager
resources and functionality without being aware of any specific Cisco Unified CallManager.
1-3
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 1 Overview
 CTI Manager (Cluster Support)
The Cisco Unified CallManager cluster abstraction also enhances the failover capability of CTI
Manager resources. A failover condition occurs when a Cisco Unified CallManager node fails, a CTI
Manager fails, or a TAPI application fails, as illustrated in Figure 1-1.

Figure 1-1 Cluster Support Architecture

Cisco Unified CallManager Failure
When a Cisco Unified CallManager node in a cluster fails, the CTI Manager recovers the affected CTI
ports and route points by reopening these devices on another Cisco Unified CallManager node. When
the failure is first detected, Cisco Unified TSP sends a PHONE_STATE (PHONESTATE_SUSPEND)
message to the TAPI application.

When the CTI port/route point is successfully reopened on another Cisco Unified CallManager,
Cisco Unified TSP sends a phone PHONE_STATE (PHONESTATE_RESUME) message to the TAPI
application. If no Cisco Unified CallManager is available, the CTI Manager waits until an appropriate
Cisco Unified CallManager comes back in service and tries to open the device again. The lines on the
affected device also go out of service and in service with the corresponding LINE_LINEDEVSTATE
(LINEDEVSTATE_OUTOFSERVICE) and LINE_LINEDEVSTATE (LINEDEVSTATE_INSERVICE)
events sent by Cisco Unified TSP to the TAPI application. If for some reason the device or lines cannot
be opened, even when all Cisco Unified CallManagers come back in service, the devices or lines are
closed, and Cisco Unified TSP will send PHONE_CLOSE or LINE_CLOSE messages to the TAPI
application.

When a failed Cisco Unified CallManager node comes back in service, CTI Manager “re-homes” the
affected CTI ports or route points back to their original Cisco Unified CallManager. The graceful
re-homing process ensures that the re-homing only starts when calls are no longer being processed or
are active on the affected device. For this reason, the re-homing process may not finish for a long time,
especially for route points, which can handle many simultaneous calls.

When a Cisco Unified CallManager node fails, phones currently re-home to another
Cisco Unified CallManager node in the same cluster. If a TAPI application has a phone device opened
and the phone goes through the re-homing process, CTI Manager automatically recovers that device, and
Cisco Unified TSP sends a PHONE_STATE (PHONESTATE_SUSPEND) message to the TAPI
application. When the phone successfully re-homes to another Cisco Unified CallManager node,
Cisco Unified TSP sends a PHONE_STATE (PHONESTATE_RESUME) message to the TAPI
application.

The lines on the affected device also go out of service and in service and Cisco Unified TSP sends
LINE_LINEDEVSTATE (LINEDEVSTATE_OUTOFSERVICE) and LINE_LINEDEVSTATE
(LINEDEVSTATE_INSERVICE) messages to the TAPI application.

TAPI application

Cisco TSP

CTI Manager
(primary)

CTI Manager
(secondary)

CallManagers

63
10

2

1-4
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 1 Overview
 Supported Device Types
Call Survivability
When a device or Cisco Unified CallManager failure occurs, no call survivability exists; however, media
streams that are already connected between devices will survive. Calls in the process of being set up or
modified (transfer, conference, redirect) simply get dropped.

CTI Manager Failure
When a primary CTI Manager fails, Cisco Unified TSP sends a PHONE_STATE
(PHONESTATE_SUSPEND) message and a LINE_LINEDEVSTATE
(LINEDEVSTATE_OUTOFSERVICE) message for every phone and line device that the application
opened. Cisco Unified TSP then connects to a backup CTIManager. When a connection to a backup CTI
Manager is established and the device or line successfully reopens, the Cisco Unified TSP sends a
PHONE_STATE (PHONESTATE_RESUME) or LINE_LINEDEVSTATE
(LINEDEVSTATE_INSERVICE) message to the TAPI application. If the Cisco Unified TSP is
unsuccessful in opening the device or line for a CTI port or route point, the Cisco Unified TSP closes
the device or line by sending the appropriate PHONE_CLOSE or LINE_CLOSE message to the TAPI
application.

After Cisco Unified TSP is connected to the backup CTIManager, Cisco Unified TSP will not reconnect
to the primary CTIManager until the connection is lost between Cisco Unified TSP and the backup
CTIManager.

If devices are added to or removed from the user while the CTI Manager is down, Cisco Unified TSP
generates PHONE_CREATE/LINE_CREATE or PHONE_REMOVE/LINE_REMOVE events,
respectively, when connection to a backup CTI Manager is established.

Cisco Unified TAPI Application Failure
When a Cisco TAPI application fails, that is, the CTI Manager closes the provider, calls at CTI ports and
route points that have not yet been terminated get redirected to the Call Forward On Failure (CFF)
number that has been configured for them. New calls into CTI Ports and Route Points that are not opened
by an application are routed to their CFNA number.

Supported Device Types
Cisco Unified TSP supports the following device types:

• 30 SP+ (This device has spurious offhook problems, not recommended.)

• 12 SP+ (This device has spurious offhook problems, not recommended.)

• 12 SP (This device has spurious offhook problems, not recommended.)

• 7835

• 7902

• 7905

• 7910

• 7912

• 7914
1-5
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 1 Overview
 Forwarding
• 7940

• 7960

• 7965

• 7970

• CTI Route Points

• CTI Ports

• VG248 Analog Devices

• ATA186 Analog Devices

Forwarding
Cisco Unified TSP now provides added support for the lineForward() request to set and clear ForwardAll
information on a line. This will allow TAPI applications to set the Call Forward All setting for a
particular line device. Activating this feature will allow users to set the call forwarding Unconditionally
to a forward destination.

Cisco Unified TSP sends LINE_ADDRESSSTATE messages when lineForward() requests successfully
complete. These events also get sent when call forward indications are obtained from the CTI, indicating
that a change in forward status has been received from a third party, such as the Cisco Unified
CallManager Administration or another application setting call forward all.

Redirect and Blind Transfer
The Cisco Unified TSP supports several different methods of Redirect and Blind Transfer. This section
outlines the different methods as well as the differences between each method.

lineRedirect
This is the standard TAPI lineRedirect function. It is used to redirect calls to a specified destination.
The Calling Search Space and Original Called Party used by Cisco Unified TSP for this function are as
follows:

• Calling Search Space (CSS) — Uses CSS of the CallingParty (the party being redirected) for all
cases unless the call is in a conference or a member of a two-party conference where it uses the CSS
of the RedirectingParty (the party that is doing the redirect).

• Original Called Party — not changed.

lineDevSpecific – Redirect Reset Original Called ID
This function is used to redirect calls to a specified destination while resetting the Original Called Party
to the party that is redirecting the call. The Calling Search Space and Original Called Party used by
Cisco Unified TSP for this function are as follows:

• Calling Search Space (CSS) — Uses CSS of the CallingParty (the party being redirected).

• Original Called Party — set to the RedirectingParty (the party that is redirecting the call).
1-6
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 1 Overview
 Redirect and Blind Transfer
lineDevSpecific – Redirect Set Original Called ID
This function is used to redirect calls to a specified destination while allowing the application to set the
Original Called Party to any value. The Calling Search Space and Original Called Party used by
Cisco Unified TSP for this function are as follows:

• Calling Search Space (CSS) — Uses CSS of the CallingParty (the party being redirected).

• Original Called Party — set to the preferredOriginalCalledID specified in the lineDevSpecific
function.

This request can be used to implement the Transfer to Voice Mail feature (TxToVM). Using this feature,
applications can transfer the call on a line directly to another line’s voice mailbox. TxToVM can be
achieved by specifying the following fields in the above request: voice mail pilot as the destination DN
and the DN of the line to whose voice mail box the call is to be transferred as the
preferredOriginalCalledID.

lineDevSpecific – Redirect FAC CMC
This function is used to redirect calls to a specified destination that requires either a FAC, CMC, or both.
The Calling Search Space and Original Called Party used by Cisco Unified TSP for this function are as
follows:

• Calling Search Space (CSS) — Uses CSS of the CallingParty (the party being redirected).

• Original Called Party — not changed.

lineBlindTransfer
This is the standard TAPI lineBlindTransfer function. It is used to blind transfer calls to a specified
destination. The Calling Search Space and Original Called Party used by Cisco Unified TSP for this
function are as follows:

• Calling Search Space (CSS) — Uses CSS of the TransferringParty (the party that is transferring
the call).

• Original Called Party — set to the TransferringParty (the party that is transferring the call).

lineDevSpecific - BlindTransfer FAC CMC
This function is used to blind transfer calls to a specified destination that requires either a FAC, CMC,
or both. The Calling Search Space and Original Called Party used by Cisco Unified TSP for this
function are as follows:

• Calling Search Space (CSS) — Uses CSS of the TransferringParty (the party that is transferring
the call).

• Original Called Party — set to the TransferringParty (the party that is transferring the call).
1-7
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 1 Overview
 Extension Mobility Support
Extension Mobility Support
Extension Mobility, a Cisco Unified CallManager feature, allows a user to log in and log out of a phone.
Cisco Unified CallManager Extension Mobility loads a user Device Profile (including line, speed dial
numbers, and so on) onto the phone when the user logs in.

Cisco Unified TSP recognizes a user who is logged into a device as the Cisco Unified TSP User.

Using the Cisco Unified CallManager Administration pages, you can associate a list of controlled
devices with a user.

When the Cisco Unified TSP user logs into the device, the lines that are listed in the user's Extension
Mobility profile are placed on the phone device, and lines previously on the phone are removed. If the
device is not in the controlled device list for the Cisco Unified TSP User, the application receives a
PHONE_CREATE or LINE_CREATE message. If the device is in the controlled list, the application
receives a LINE_CREATE message for the added line and a LINE_REMOVE message for the removed
line.

When the user logs out, the original lines get restored. For a non-controlled device, the application
perceives a PHONE_REMOVE or LINE_REMOVE message. For a controlled device, it perceives a
LINE_CREATE message for an added line and a LINE_REMOVE message for a removed line.

Directory Change Notification Handling
The Cisco Unified TSP sends notification events when a device has been added to or removed from the
user's controlled device list in the directory. Cisco Unified TSP sends events when the user is deleted
from the Cisco Unified CallManager Administration pages.

Cisco Unified TSP sends a LINE_CREATE or PHONE_CREATE message when a device is added to a
users' control list.

It sends a LINE_REMOVE or PHONE_REMOVE message when a device is removed from the user's
controlled list or the device is removed from database.

When the Cisco Unified CallManager system administrator deletes the current user, Cisco Unified TSP
generates a LINE_CLOSE and PHONE_CLOSE message for each open line and open phone. After
doing this, it sends a LINE_REMOVE and PHONE_REMOVE message for all lines and phones.

Note Cisco Unified TSP generates PHONE_REMOVE / PHONE_CREATE messages only if the application
called the phoneInitialize function earlier.

Change notification is generated if the device is added to or removed from the user by using the
Cisco Unified CallManager Administration pages or Bulk Administration Tool (BAT).

If you program against the LDAP directory, change notification does not generate.
1-8
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 1 Overview
 Monitoring Call Park Directory Numbers
Monitoring Call Park Directory Numbers
The Cisco Unified TSP supports monitoring calls on lines that represent Cisco Unified CallManager
Call Park Directory Numbers (Call Park DNs). The Cisco Unified TSP uses a device-specific extension
in the LINEDEVCAPS structure that allows TAPI applications to differentiate Call Park DN lines from
other lines. If an application opens a Call Park DN line, all calls that are parked to the Call Park DN get
reported to the application. The application cannot perform any call control functions on any calls at a
Call Park DN.

To open Call Park DN lines, you must check the Monitor Call Park DNs check box in the
Cisco Unified CallManager User Administration for the Cisco Unified TSP user. Otherwise, the
application will not perceive any of the Call Park DN lines upon initialization.

Multiple Cisco Unified TSPs
In the Cisco Unified TAPI solution, the TAPI application and Cisco Unified TSP get installed on the
same machine. The Cisco Unified TAPI application and Cisco Unified TSP do not directly interface
with each other. A layer written by Microsoft sits between the TAPI application and Cisco Unified TSP.
This layer, known as TAPISRV, allows the installation of multiple TSPs on the same machine, and it
hides that fact from the Cisco Unified TAPI application. The only difference to the TAPI application is
that it is now informed that there are more lines that it can control.

Consider an example—assume that Cisco Unified TSP1 exposes 100 lines, and Cisco Unified TSP2
exposes 100 lines. In the single Cisco Unified TSP architecture where Cisco Unified TSP1 is the only
Cisco Unified TSP that is installed, Cisco Unified TSP1 would tell TAPISRV that it supports 100 lines,
and TAPISRV would tell the application that it can control 100 lines. In the multiple Cisco Unified TSP
architecture, where both Cisco Unified TSPs are installed, this means that Cisco Unified TSP1 would
tell TAPISRV that it supports 100 lines, and Cisco Unified TSP2 would tell TAPISRV that it supports
100 lines. TAPISRV would add the lines and inform the application that it now supports 200 lines. The
application communicates with TAPISRV, and TAPISRV takes care of communicating with the correct
Cisco Unified TSP.

Ensure that each Cisco Unified TSP is configured with a different username and password that you
administer in the Cisco Unified CallManager Directory. Configure each user in the Directory so devices
that are associated with each user do not overlap. Each Cisco Unified TSP in the multiple
Cisco Unified TSP system does not communicate with the others. Each Cisco Unified TSP in the
multiple Cisco Unified TSP system creates a separate CTI connection to the CTI Manager as shown in
Figure 1-2. Multiple Cisco Unified TSPs help in scalability and higher performance.

Figure 1-2 Mutiple Cisco Unified TSPs Connect to CTI Manager

TAPI application

001
002 003

004Cisco TSP

CTI Manager

CallManagers 63
10

3

1-9
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 1 Overview
 Multiple Calls per Line Appearance
Multiple Calls per Line Appearance

Maximum Number of Calls
The maximum number of calls per Line Appearance is database configurable. This means that the
Cisco Unified TSP supports more than two calls per line on MCD (Multiple Call Display) devices. An
MCD device is a device that can display more than two call instances per DN at any given time. For
non-MCD devices, the Cisco Unified TSP supports a maximum of two calls per line. The absolute
maximum number of calls per line appearance is 200.

Busy Trigger
In Cisco Unified CallManager there is a setting, busy trigger, that indicates the limit on the number of
calls per line appearance before Cisco Unified CallManager will reject an incoming call. The busy
trigger setting is database configurable, per line appearance, per cluster. The busy trigger setting replaces
the old call waiting flag per DN. The busy trigger setting cannot be modified using the
Cisco Unified TSP.

CFNA Timer
The Call Forward No Answer (CFNA) timer is database configurable, per DN, per cluster. This timer is
not configurable using Cisco Unified TSP.

Shared Line Appearance
Cisco Unified TSP supports opening two different lines that each share the same DN. Each of these lines
is known as a Shared Line Appearance.

The CUnified CMallows multiple active calls to exist concurrently on each of the different devices that
share the same line appearance. Each device is still limited to, at most, one active call and multiple hold
or incoming calls at any given time. This functionality can be supported by applications that use the
Cisco Unified TSP to monitor and control shared line appearances.

If a call is active on a line that is a shared line appearance with another line, then the call appears on the
other line with the dwCallState=CONNECTED and the dwCallStateMode=INACTIVE. Even though the
call party information may not be displayed on the actual IP Phone for the call at the other line, the call
party information is still reported by Cisco Unified TSP on the call at the other line. This gives the
application the ability to decide if it wishes to block this information or not. Also, no call control
functions are allowed on a call that is in the CONNECTED INACTIVE call state.

Cisco Unified TSP does not support shared lines on CTI Route Point devices.

In the scenario where a line is calling a DN that contains multiple shared lines, the dwCalledIDName in
the LINECALLINFO structure for the line with the outbound call may be empty or set randomly to the
name of one of the shared DN’s. The reason for this should be obvious as Cisco Unified TSP and the
Cisco Unified CallManager cannot resolve which of the shared DN’s you are calling until the call is
answered.
1-10
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 1 Overview
 Select Calls
Select Calls
There is a softkey “Select” on the IP Phones that allows a user the ability to select call instances in order
to perform feature activation, such as transfer or conference, on those calls. The action of selecting a
call on a line locks that call so that it cannot be selected by any of the shared line appearances. Pressing
the “Select” key on a selected call will de-select the call.

The ability to select calls is not supported by Cisco Unified TSP. The reason for this is that all of the
Transfer and Conference functions contain parameters indicating which calls the operation should be
invoked on. Therefore, there is no reason to support “Select” through Cisco Unified TSP.

Cisco Unified TSP supports the events caused by a user selecting a call on a line that is being monitored
by the application. When a call on a line is selected, all of the other lines that share the same line
appearance will see the call state change to dwCallState=CONNECTED, and
dwCallStateMode=INACTIVE.

Direct Transfer
In Unified CM, a softkey, “Direct Transfer,” is provided to transfer the other end of one established call
to the other end of another established call, while dropping the feature initiator from those two calls.
Here, an established call refers to a call that is either in the onhold state or in the connected state. The
“Direct Transfer” feature does not initiate a consultation call and does not put the active call onhold.

A TAPI application can invoke the “Direct Transfer” feature using the TAPI lineCompleteTransfer()
function on two calls that are already in the established state. This also means that the two calls do not
have to be initially set up using the lineSetupTransfer() function.

Join
In Unified CM, a softkey, “Join,” is provided to join all the parties of established calls (at least two) into
one conference call. The “Join” feature does not initiate a consultation call and does not put the active
call onhold. It also can include more than 2 calls, resulting in a call with more than 3 parties.

Cisco Unified TSP exposes the “Join” feature as a new device specific function which is known as
lineDevSpecific() – Join. This function can be performed on two or more calls that are already in the
established state. This also means that the two calls do not have to be initially set up using the
lineSetupConference() or linePrepareAddToConference() functions.

Cisco Unified TSP also supports the lineCompleteTransfer() function with
dwTransferMode=Conference. This function allows a TAPI application to join all the parties of two, and
only two, established calls into one conference call.

Cisco Unified TSP also supports the lineAddToConference() function to join a call to an existing
conference call that is in the ONHOLD state.

There is a feature interaction issue involving Join, Shared Lines, and the Maximum Number of Calls.
The issue occurs when you have two shared lines and the maximum number of calls on one line is less
than the maximum number of calls on the other line. If a Join is performed on the line that has more
maximum calls, then this issue will be encountered if the primary call of the Join is beyond the maximum
number of calls for the other shared line.
1-11
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 1 Overview
 Privacy Release
For example, in a scenario where one shared line, A, has a maximum number of calls set to 5 and another
shared line, A’, has a maximum number of calls set to 2. The scenario involves the following steps:

A calls B. B answers. A puts the call onhold.

C calls A. A answers. C puts the call onhold.

At this point, line A has two calls in the ONHOLD state and line A’ has two calls in the
CONNECTED_INACTIVE state.

D calls A. A answers.

At this point, the call will be presented to A, but it will not be presented to A’. The reason for this is
because the maximum calls for A’ is set to 2.

A performs a Join operation either through the phone or using the lineDevSpecific – Join API to join all
the parties in the conference. It uses the call between A and D as the primary call of the Join operation.

Because the call between A and D was used as the primary call of the Join, the ensuing conference call
will not be presented to A’. Both calls on A’ will go to the IDLE state. The end result is that A’ will not
see the conference call that exists on A.

Privacy Release
The Cisco Unified CallManager Privacy Release feature allows the user to dynamically alter its privacy
setting. The privacy setting affects all existing and future calls on the device.

Cisco Unified TSP does not support the Privacy Release feature.

Barge and cBarge
The Barge and cBarge features are supported in Cisco Unified CallManager. The Barge feature uses the
built-in conference bridge and cBarge uses the shared conference resource in Cisco Unified CallManager.

Cisco Unified TSP supports the events caused by the invocation of the Barge and cBarge features. It
does not support invoking either Barge or cBarge through an API of Cisco Unified TSP.

Cisco Unified TSP Auto Update Functionality
Cisco Unified TSP supports auto update functionality so that the latest plug-in can be downloaded and
installed on a client machine. The new plug-in will be QBE compatible with the connected CTIManager.
When the Cisco Unified CallManager is upgraded to a higher version, and Cisco Unified TSP auto
update functionality is enabled, the user will receive the latest compatible Cisco Unified TSP, which will
work with the upgraded Cisco Unified CallManager. This makes sure that the applications work as
expected with the new release of Cisco Unified CallManager (provided the new call manager interface
is backward compatible with the TAPI interface). Cisco Unified TSP installed locally on the client
machine allows applications to set the auto update options as part of the Cisco Unified TSP
configuration. The user can opt for updating Cisco Unified TSP in following different ways:

• Update Cisco Unified TSP whenever a different version (higher version than the existing version) is
available on the Cisco Unified CallManager server.

• Update Cisco Unified TSP whenever there is a QBE protocol version mismatch between the existing
Cisco Unified TSP and the Cisco Unified CallManager version.

• Do not update Cisco Unified TSP using Auto Update functionality.
1-12
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 1 Overview
 QoS Support
QoS Support
Cisco Unified TSP supports the Cisco baseline for baselining of Quality of Service (QoS).
Cisco Unified TSP marks the IP DSCP (Differentiated Services Code Point) for QBE control signals
flowing from TSP to CTI with the value of the Cisco Unified CallManager Service parameter “DSCP IP
for CTI Applications” as sent by CTI in the ProviderOpenCompletedEvent. The Cisco TAPI Wave driver
marks the RTP packets with the value that is sent by CTI in the StartTransmissionEvent. The DSCP value
received in the StartTransmissionEvent is stored in the DevSpecific portion of the LINECALLINFO
structure and the LINECALLINFOSTATE_DEVSPECIFIC event with the QoS indicator is fired.

Presentation Indication (PI)
There is a need to separate the presentability aspects of a number (calling, called, and so on) from the
actual number itself. For example, when the number is not to be displayed on the IP phone, the
information might still be needed by another system, such as Unity VM. Hence, each number/name of
the display name needs to be associated with a Presentation Indication (PI) flag, which will indicate
whether the information should be displayed to the user or not.

This feature can be setup as follows:

On a Per Call Basis

Route Patterns and Translation Patterns can be used to set or reset PI flags for various partyDNs/Names
on a per call basis. If the pattern matches the digits, then the PI settings associated with the pattern will
be applied to the call information.

On a Permanent Basis

A trunk device can be configured with “Allow” or “Restrict” options for parties. This will set the PI flags
for the corresponding party information for all calls from this trunk.

Cisco Unified TSP supports this feature. If calls are made via Translation patterns with all of the flags
set to Restricted then the CallerID/Name, ConnectedID/Name and RedirectionID/Name will be sent to
applications as Blank. The LINECALLPARTYID flags will also be set to Blocked if both the Name and
Party number are set to Restricted.

Compatibility
The Cisco TAPI Service Provider is a TAPI 2.1 service provider.

When developing an application, be sure only to use functions supported by the Cisco TAPI Service
Provider. For example, transfer is supported, but fax detection is not. If an application requires a media
or bearer mode that is not supported, then it will not work as expected.

Cisco Unified TSP does not support TAPI 3.0 applications.
1-13
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 1 Overview
 Unicode Support
Unicode Support
Cisco Unified TSP provides support for Unicode character sets.

Cisco Unified TSP will send Unicode party names to the application in all call events. The party name
needs to be configured in the CUnified CMadmin pages. This support is limited to only party names. The
locale information is also sent to the application. The UCS-2 encoding for Unicode is used.

The party names will be in the DevSpecific portion of the LINECALLINFO structure.

TLS Support
Cisco Unified TSP will start supporting security for signalling and media. It will take care of providing
secure CTI QBE signalling through TLS. This will help prevent security attacks like man in the middle,
spoofing, and eavesdropping. Signaling data will be passed over a secure channel and will be encrypted.
The data on this secure connection can not be viewed by any third party on the network. TLS support
provides secure, encrypted and authenticated signaling communication stream between TSP/CTI
applications and the CTIManager. This secure signaling path would be used for SRTP keys exchange for
media security as well.

SRTP Support
Secure RTP feature is supported from this release. Detail SRTP key information will be reported to
applciaiton if there is secure connection to CTIManager and the applcaition user is authorized to receive
SRTP information. However there is will be no SRTP key information available for mid-call event,
except secure media indicator. And the secure media indicator for each call on the device will be sent as
LineCallDevSpecific event upon PhoneDevSpecific request with
CPDST_REQUEST_RTP_SNAPSHOT_INFO message type.

During device registration, application has an option to specify algorithm Ids for SRTP feature.

FAC/CMC Support
There are two CallManager features, Forced Authorization Code (FAC) and Client Matter Code (CMC),
that the Cisco Unified TSP supports and interacts with. The FAC feature allows the System
Administrator the ability to require users to enter an authorization code in order to reach certain dialed
numbers. The CMC feature allows the System Administrator the ability to require users to enter a client
matter code in order to reach certain dialed numbers.

The CallManager alerts a user of a phone that a FAC or CMC must be entered by sending a “ZipZip”
tone to the phone which the phone in turn plays to the user. Cisco Unified TSP will send a new
LINE_DEVSPECIFIC event to the application whenever a “ZipZip” tone is to be played by the
application. This can be used by the application to indicate when a FAC or CMC is required. For an
application to start receiving the new LINE_DEVSPECIFIC event, it must perform the following steps:

1. lineOpen with dwExtVersion set to 0x00050000 or higher

2. lineDevSpecific – Set Status Messages to turn on the Call Tone Changed device specific events

The FAC or CMC code can be entered by the application using the lineDial() API. The code may be
entered in its entirety or it may be entered one digit at a time. An application may also enter the FAC
and CMC code in the same string as long as they are separated by a “#” character and also ended with a
“#” character. The “#” character at the end is optional as it only serves to indicate dialing is complete.
1-14
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 1 Overview
 CTI Port Third Party Monitoring Port
If an application does a lineRedirect() or a lineBlindTransfer() to a destination that requires a FAC or
CMC, then Cisco Unified TSP will return an error. The error returned by Cisco Unified TSP indicates
whether a FAC, CMC, or both is required. Cisco Unified TSP supports two new lineDevSpecific()
functions, one for Redirect and one for BlindTransfer, that will allow an application to enter a FAC or
CMC, or both, when either Redirecting or Blind Transferring a call.

CTI Port Third Party Monitoring Port
Opening a CTI port device in first party mode means that either the application is terminating the media
itself at the CTI port or that the application is using the Cisco Wave Drivers to terminate the media at
the CTI port. This is also known as registering the CTI port device.

Opening a CTI port in third party mode means that the application is interested in just opening the CTI
port device, but it does not want to handle the media termination at the CTI port device. An example of
this would be a case where an application would want to open a CTI port in third party mode because it
is interested in monitoring a CTI port device that has already been opened/registered by another
application in first party mode. Please note that opening a CTI Port in third party mode does not prohibit
the application from performing call control operations on the line or on the calls of that line.

Cisco Unified TSP allows TAPI applications to open a CTI port device in third party mode via the
lineDevSpecific API, provided, the application has negotiated at least extension version 5.0 and set the
high order bit so that the extension version is set to at least 0x80050000.

The TAPI architecture allows two different TAPI applications to be running on the same PC using the
same Cisco Unified TSP. In this situation, if both applications want to open the CTI port, there could be
problems. Therefore, the first application to open the CTI port will control which mode in which the
second application is allowed to open the CTI port. In other words, both or all applications running on
the same PC, using the same Cisco Unified TSP, must open CTI ports in the same mode in order to be
successful. If the second application tries to open the CTI port in a mode that is different from the way
in which the first application opened it, then the lineDevSpecific() request will fail.

CTI Device/Line Restriction
With CTI Device/Line restriction implementation, a CTIRestricted flag will be placed on device or line
basis. When a device is restricted, it will assume all its configured lines are restricted.

Cisco Unified TSP will not report any restricted devices and lines back to applcaition. And when a
CTIRestricted flag is changed from CUnified CMadmin, Cisco Unified TSP will treat it as normal
device/line add or removal.

XSI Object Pass Through
XSI-enabled IP phones allow applications to directly communicate with the phone and access XSI
features, such as manipulate display, get user input, play tone, and so on. In order to allow TAPI
applications access to the XSI capabilities without having to set up and maintain an independent
connection directly to the phone, TAPI provides the ability to send the device data through the CTI
interface. This feature is exposed as a Cisco Unified TSP device-specific extension.

Only PhoneDevSpecificDataPassthrough request is supported for the IP phone devices.
1-15
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 1 Overview
 XSI Object Pass Through
1-16
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Cisco Unified TAPI Developers G
OL-9442-01
C H A P T E R 2

Cisco Unified TAPI Installation

This chapter describes how to install and configure the Cisco Unified Telephony Application
Programming Interface (TAPI) client software for Cisco Unified CallManager 5.0 and later releases.

This chapter contains the following topics:

• Introduction

• Installing the Cisco Unified TSP

• Activating the Cisco Unified TSP

• Configuring the Cisco Unified TSP

• Cisco Unified TSP Configuration Settings

• Installing the Wave Driver

• Saving Wave Driver Information

• Verifying the Wave Driver Exists

• Verifying the Cisco Unified TSP Installation

• Setting Up Client-Server Configuration

• Uninstalling the Wave Driver

• Removing the Cisco Unified TSP

• Managing the Cisco Unified TSP

Introduction
The Cisco Unified TAPI Service Provider (Cisco Unified TSP) allows developers to create customized
IP telephony applications for Cisco users; for example, voice mail with other TAPI-compliant systems,
automatic call distribution (ACD), and caller ID screen pops. Cisco Unified TSP enables the
Cisco Unified Communications system (Cisco Unified CallManager) to understand commands from a
user-level TAPI application.

The Cisco Unified TAPI solution allows you to install multiple Cisco Unified TAPI Service Providers
(TSPs) on the same machine. This configuration allows TAPI applications to increase the number of
lines that can be supported and to increase the amount of call traffic. Configure each Cisco Unified TSP
with a different username and password that is administered in the Cisco Unified CallManager
Directory. Configure each user in the Directory, so no two users are associated to the same device. TSPs
in the multiple TSP system do not communicate with each other and create a separate computer
telephony integration (CTI) connection to the Cisco Unified CallManager.
2-1
uide for Cisco Unified CallManager 5.0

Chapter 2 Cisco Unified TAPI Installation
 Installing the Cisco Unified TSP
Note If you have upgraded to Cisco Unified CallManager 5.0, you must upgrade the TAPI client software on
any application server or client workstation on which your TAPI applications are installed. If you do not
upgrade the TAPI client, your application will fail to initialize. To upgrade, download the appropriate
client from the Cisco Unified CallManager Administration pages as described in the “Installing the
Cisco Unified TSP” section.

The upgraded TAPI client software does not work with previous releases of Cisco Unified CallManager.

Installing the Cisco Unified TSP
Install the Cisco Unified TSP software either directly from the Cisco Unified CallManager CD-ROM or
from Cisco Unified CallManager Administration. For information on installing plugins from the
Cisco Unified CallManager, see the Cisco Unified CallManager Administration Guide.

Note If you install Cisco Unified TSP 5.0 on a system that contains Cisco Unified TSP 4.1, the installation
program deletes the TSP 4.1 version and installs TSP 5.0. If you install Cisco Unified TSP 5.0 on a
system that contains Cisco Unified TSP 3.1, Cisco Unified TSP 3.2, or Cisco Unified CallManager TSP
3.3, the installation program upgrades the TSPs to TSP 5.0. (For more details, see the “Managing the
Cisco Unified TSP” section.)

The installation wizard varies depending on whether you have a previous version of Cisco Unified TSP
installed.

Installing multiple TSPs installs multiple CiscoTSPXXX.tsp and CiscoTUISPXXX.dll files in the same
Windows system directory.

To install the Cisco Unified TSP from the Cisco Unified CallManager CD-ROM, perform the following
steps:

Procedure

Step 1 Insert the Cisco Unified CallManager CD-ROM.

Step 2 Double-click My Computer.

Step 3 Double-click the CD-ROM drive.

Step 4 Double-click the Installs folder.

Step 5 Double-click Cisco TSP.exe.

Step 6 Follow the online instructions.

Next Steps

Install the Cisco wave driver if you plan to use first-party call control. (Do this even if you are performing
your own media termination.) For more information, see the “Installing the Wave Driver” section.
2-2
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Activating the Cisco Unified TSP
Activating the Cisco Unified TSP
You can install up to 10 TSPs on a computer. Use the following procedure to activate each of these TSPs.
When you install a Cisco Unified TSP, you add it to the set of active TAPI service providers. The TSP
displays as CiscoTSPXXX, where X is between 001 and 010. If a TSP has been removed or if some
problem has occurred, you can manually add it to this set.

To manually add the Cisco Unified TSP to the list of telephony drivers, perform the following steps.

Procedure for Windows 2000 and Windows XP

Step 1 Open the Control Panel.

Step 2 Double-click Phone and Modem Options.

Step 3 On the Phone and Modem Options dialog box, click the Advanced tab.

Note If the Cisco Unified TSP is either not there or you removed it previously and want to add it now,
you can do so from this window.

Step 4 Click Add.

Step 5 On the Add Provider dialog box, choose the appropriate TSP. Labels identify the TSPs in the Telephony
providers window as CiscoTSPXXX, where XXX is between 001 and 010.

Step 6 Click Add.

The TSP that you chose displays in the provider list in the Phone and Modem Options window.

Step 7 Configure the Cisco Unified TSP as described in “Configuring the Cisco Unified TSP” or click Close to
complete the setup.

Procedure for Windows NT, Windows 98, and Windows 95

Step 1 Open the Control Panel.

Step 2 Double-click Telephony.

Step 3 Click the Telephony Drivers tab.

Note If the Cisco Unified TSP is either not there or you removed it previously and want to add it now,
you can do so from this window.

Step 4 Click Add.

Step 5 On the Add Provider dialog box, choose the appropriate TSP. Labels identify the TSPs in the Telephony
providers window as CiscoTSPXXX, where XXX is between 001 and 010.

Step 6 Click Add.

The Provider list in the Telephony Drivers window now includes the CiscoTSPXXX range 001 - 010.

Step 7 Configure Cisco Unified TSP as described in “Configuring the Cisco Unified TSP” or click Close to
complete the setup.
2-3
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Configuring the Cisco Unified TSP
Configuring the Cisco Unified TSP
You configure the Cisco Unified TSP by setting parameters in the Cisco IP-PBX Service Provider
configuration window. Perform the following steps to configure Cisco Unified TSP.

Procedure for Windows 2000 and Windows XP

Step 1 Open the Control Panel.

Step 2 Double-click Phone and Modem Options.

Step 3 Choose the Cisco Unified TSP that you want to configure.

Step 4 Click Configure.

The system displays the Cisco IP PBX Service Provider dialog box.

Step 5 Enter the appropriate settings as described in the “Cisco Unified TSP Configuration Settings” section.

Step 6 Click OK to save changes.

Note After the TSP is configured, you must restart the telephony service before an application can run
and connect with its devices.

Procedure for Windows NT, Windows 98, and Windows 95

Step 1 Open the Control Panel.

Step 2 Double-click Telephony.

Step 3 Choose the Cisco Unified TSP that you want to configure.

Step 4 Click Configure.

The system displays the Cisco IP PBX Service Provider dialog box.

Step 5 Enter the appropriate settings as described in the “Cisco Unified TSP Configuration Settings” section.

Step 6 Click OK to save changes.

Note After configuring the TSP, you must restart the telephony service before an application can run
and connect with its devices.
2-4
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Cisco Unified TSP Configuration Settings
Cisco Unified TSP Configuration Settings
The following sections describe the fields in the Cisco-IP PBX Service Provider dialog box:

• General Tab

• User Tab

• CTI Manager Tab

• Wave Tab

• Trace Tab

• Advanced Tab

• Language Tab

General Tab
The General Tab displays TSP and TSPUI version information, as illustrated in Figure 2-1.

Figure 2-1 Cisco IP PBX Service Provider General Tab
2-5
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Cisco Unified TSP Configuration Settings
Table 2-1 contains a list of the General tab fields that must be set and their descriptions.

User Tab
The User tab allows you to configure security information, as illustrated in Figure 2-2.

Figure 2-2 Cisco IP PBX Service Provider User Tab

Table 2-1 Auto Update Information Fields

Field Description

Ask Before Update This check box enables the user to control the auto update process.
The Default is disabled.

Never AutoUpdate The Default value is shown in Figure 2-1. Choosing this radio
button does not perform an auto update even after detecting an
upgradeable plugin version on the Cisco Unified CallManager.

Always AutoUpdate Choose this radio button to allow the CiscoTSP to auto update after
detecting an upgradeable plugin version on the
Cisco Unified CallManager.

AutoUpdate on Incompatible
QBEProtocolVersion

Choose this radio button to allow the CiscoTSP to auto update only
when the local TSP version is incompatible with the
Cisco Unified CallManager, and upgrading the TSP to the plugin
version is the only choice to continue.
2-6
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Cisco Unified TSP Configuration Settings
Table 2-2 contains a list of the fields for the User tab that must be set and their descriptions.

CTI Manager Tab
The CTI Manager tab allows you to configure primary and secondary CTI Manager information, as
illustrated in Figure 2-3.

Figure 2-3 Cisco-IP PBX Service Provider CTI Manager Tab

Table 2-2 User Tab Configuration Fields

Field Description

User Name Enter the user name of the user that you want to give access to
devices. This TSP can access devices and lines that are associated
with this user. Make sure that this user is also configured in the
Cisco Unified CallManager, so TSP can connect to
Cisco Unified CallManager.

The TSP configuration registry keys store the user name and
password that you enter.

Note You can designate only one user name and password to be
active at any time for a TSP.

Password Enter the password that is associated with the user that you entered
in the User Name field. The computer encrypts the password and
stores it in the registry.

Verify Password Reenter the user password.
2-7
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Cisco Unified TSP Configuration Settings
Table 2-3 contains a list of the CTI Manager tab fields that must be set and their descriptions.

Wave Tab
The Wave tab allows you to configure settings for your wave devices, as illustrated in Figure 2-4.

Figure 2-4 Cisco IP PBX Service Provider Wave Tab

Table 2-3 CTI Manager Configuration Fields

Field Description

Primary CTI Manager Location Use to specify the CTI Manager to which the TSP attempts to
connect first.

If the TSP is on the same computer as the primary CTIManager,
choose the Local Host radio button.

If the primary CTIManager is on a different computer, choose the IP
Address radio button and enter the IP address of primary
CTIManager or choose the Host Name radio button and enter the
host name of primary CTI Manager.

Backup CTI Manager Location Use to specify the CTI Manager to which the TSP attempts to
connect if a connection to the primary CTI Manager fails.

If the TSP is on the same computer as the backup CTIManager,
choose the Local Host radio button.

If the backup CTIManager is on a different computer, choose the IP
Address radio button and enter the IP address of backup
CTIManager or choose the Host Name radio button and enter the
host name of backup CTI Manager.
2-8
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Cisco Unified TSP Configuration Settings
Table 2-4 contains a list of the Wave tab fields that must be set and their descriptions.

Table 2-4 Wave Tab Configuration Fields

Field Description

Automated Voice Calls The number of Cisco wave devices that you are using determines the
possible number of automated voice lines. (The default is 5.) You
can open as many CTI ports as the number of Cisco wave devices
that are configured. For example, if you enter “5,” you need to
create five CTI port devices in Cisco Unified CallManager. If you
change this number, you need to remove and then reinstall any
Cisco wave devices that you installed.

You can only configure a maximum of 255 wave devices for all
installed TSPs because Microsoft limits the number of wave devices
per wave driver to 255.

When you configure 256 or more wave devices (including Cisco or
other wave devices), Windows displays the following error when
you access the Sounds and Multimedia control panel: “An Error
occurred while Windows was working with the Control Panel file
C:\Winnt\System32\MMSYS.CPL.” TSP can still handle the
installed Cisco wave devices as long as you have not configured
more than 255 Cisco devices.

The current number of possible automated voice lines designates
the maximum number of lines that can be simultaneously opened by
using both LINEMEDIAMODE_AUTOMATEDVOICE and
LINEMEDIAMODE_INTERACTIVEVOICE.

If you are not developing a third-party call control application,
check the Enumerate only lines that support automated voice check
box, so the Cisco Unified TSP detects only lines that are associated
with a CTI port device.

Silence Detection If you use silence detection, this check box notifies the wave driver
which method to use to detect silence on lines that support
automated voice calls that are using the Cisco Wave Driver. If the
check box is checked (default), the wave driver searches for the
absence of audio-stream RTP packets. Because all devices on the
network suppress silence and stop sending packets, this method
provides a very efficient way for the wave driver to detect silence.

However, if some phones or gateways do not perform silence
suppression, the wave driver must analyze the content of the media
stream and, at some threshold, declare that silence is in effect. This
CPU-intensive method handles media streams from any type of
device.

If some phones or gateways on your network do not perform silence
suppression, you must specify the energy level at which the wave
driver declares that silence is in effect. This value of the 16-bit
linear PUnified CMenergy level ranges from 0 to 32767, and the
default is 200. If all phones and gateways perform silence
suppression, the system ignores this value.
2-9
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Cisco Unified TSP Configuration Settings
Trace Tab
The Trace tab allows you to configure various trace settings, as illustrated in Figure 2-5. Changes to
trace parameters take effect immediately, even if TSP is running.

Figure 2-5 Cisco IP PBX Service Provider Trace Tab

Table 2-5 contains a list of the Trace tab fields that must be set and their descriptions.

Table 2-5 Trace Tab Configuration Fields

Field Description

On This setting allows you to enable Global CiscoTSP trace.

Check the check box to enable CiscoTSP trace. When you enable
trace, you can modify other trace parameters in the dialog box. The
CiscoTSP trace depends on the values that you enter in these fields.

Uncheck the check box to disable CiscoTSP trace. When you
disable trace, you cannot choose any trace parameters in the dialog
box, and TSP ignores the values that are entered in these fields.

Max lines/file Use to specify the maximum number of lines the trace file can
contain. The default is 10,000. Once the file contains the maximum
number of lines, trace opens the next file and writes to that file.

No. of files Use to specify the maximum number of trace files. The default is 10.
File numbering occurs in a rotating sequence starting at 0. The
counter restarts at 0 after it reaches the maximum number of files
minus one.
2-10
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Cisco Unified TSP Configuration Settings
Directory Use to specify the location in which trace files for all
Cisco Unified TSPs are stored. Make sure that the specified
directory exists.

The system creates a subdirectory for each Cisco Unified TSP. For
example, the CiscoTSP001Log directory stores Cisco Unified TSP
1 log files. The system creates trace files with filename
TSP001Debug000xxx.txt for each TSP in its respective
subdirectory.

TSP Trace This setting activates internal TSP tracing. When you activate TSP
tracing, Cisco Unified TSP logs internal debug information that you
can use for debugging purposes. You can choose one of the
following levels:

Error—Logs only TSP errors.

Detailed—Logs all TSP details (such as, log function calls in the
order that they are called).

The system checks the TSP Trace check box and chooses the Error
radio button by default.

CTI Trace This setting traces messages flowing between Cisco Unified TSP
and CTI. Cisco Unified TSP communicates with the CTI Manager.
By default, the system leaves the check box unchecked.

TSPI Trace This setting traces all messages and function calls between TAPI
and Cisco Unified TSP. The system leaves this check box
unchecked by default.

If you check the check box, TSP traces all the function calls that
TAPI makes to Cisco Unified TSP with parameters and messages
(events) from Cisco Unified TSP to TAPI.

Table 2-5 Trace Tab Configuration Fields (continued)

Field Description
2-11
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Cisco Unified TSP Configuration Settings
Advanced Tab
The Advanced tab allows you to configure timer settings, as illustrated in Figure 2-6.

Note These timer settings that are meant for advanced users only rarely change.

Figure 2-6 Cisco IP PBX Service Provider Advanced Tab

Table 2-6 contains a list of the Advanced tab fields that must be set and their descriptions.

Table 2-6 Advanced Configuration Fields

Field Description

Synchronous Message Timeout
(secs)

Use to designate the time that the TSP waits to receive a response to
a synchronous message. The value displays in seconds, and the
default is 15. Range goes from 5 to 60 seconds.

Requested Heartbeat Interval
(secs)

Use to designate the interval at which the heartbeat messages are
sent from TSP to detect whether the CTI Manager connection is still
alive. TSP sends heartbeats when no traffic exists between the TSP
and CTI Manager for 30 seconds or more. The default interval is 30
seconds. Range goes from 30 to 300 seconds.

Connect Retry Interval (secs) Use to designate the interval between reconnection attempts after a
CTI Manager connection failure. The default is 30 seconds. Range
goes from 15 to 300 seconds.

Provider Open Completed
Timeout (secs)

Used to designate the time that Cisco Unified TSP waits for a
Provider Open Completed Event, which indicates the CTI Manager
is initialized and ready to serve TSP requests. CTI initialization
time is directly proportional to the number of devices configured in
the system. The default value is 50 seconds. Range goes from 5 to
900 seconds.
2-12
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Installing the Wave Driver
Language Tab
The Language tab allows you to choose one of the installed languages to view the configuration settings
in that language, as illustrated in Figure 2-7.

Figure 2-7 Cisco IP PBX Service Provider Language Tab

Choose a language and click Change Language to reload the tabs with the text in that language.

Installing the Wave Driver
You can use the Cisco wave driver with Windows 2000 and Windows NT only. Windows 98 and
Windows 95 do not support the Cisco wave driver.

You should install Cisco wave driver if you plan to use first-party call control. (Do this even if you are
performing your own media termination.)

Caution Because of a restriction in Windows NT, the software may overwrite or remove existing wave drivers
from the system when you install or remove the Cisco wave driver on a Windows NT system. The
procedures in this section for installing and uninstalling the Cisco wave driver on Windows NT include
instructions on how to prevent existing wave drivers from being overwritten or removed.

To install the Cisco wave driver, perform the following steps.

Procedure for Windows XP

Step 1 Open the Control Panel.

Step 2 Open Add/Remove Hardware.

Step 3 Click Next.

Step 4 Select Yes, I have already connected the hardware.
2-13
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Installing the Wave Driver
Step 5 Select Add a New Hardware Device.

Step 6 Click Next.

Step 7 Select Install the Hardware that I manually select from a list.

Step 8 Click Next.

Step 9 For the hardware type, select Sound, video and game controller.

Step 10 Click Next.

Step 11 Click Have Disk.

Step 12 Click Browse and navigate to the Wave Drivers folder in the folder where the Cisco Unified TSP is
installed.

Step 13 Choose OEMSETUP.INF and click Open.

Step 14 In the Install From Disk window, click OK.

Step 15 Select the Cisco Unified TAPI Wave Driver in the Select a Device Driver window and select Next.

Step 16 Select Next in the Start Hardware Installation window.

Step 17 If Prompted for Digital signature Not Found, click Continue Anyway.

Step 18 The installation may issue the following prompt:

The file avaudio32.dll on Windows NT Setup Disk #1 is needed,
Type the path where the file is located and then click ok.

If so, navigate to the same location as where you chose OEMSETUP.INF, select avaudio32.dll, and click
OK.

Step 19 Click Yes.

Step 20 Click Finish.

Step 21 Click Yes to restart to restart the computer .

Procedure for Windows 2000

Step 1 Open the Control Panel.

Step 2 Double-click Add/Remove Hardware.

Step 3 Click Next.

Step 4 Click Add/Troubleshoot a Device and click Next.

Step 5 Click Add a New Device and click Next.

Step 6 Click No, I want to select the hardware from a list.

Step 7 Choose Sound, video and game controllers and click Next.

Step 8 Click Have Disk.

Step 9 Click Browse and change to the Wave Drivers folder in the folder where the Cisco Unified TSP is
installed.

Step 10 Choose OEMSETUP.INF and click Open.

Step 11 In the Install From Disk window, click OK.

Step 12 The Cisco Unified TAPI Wave Driver displays on the screen. Click Next.
2-14
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Saving Wave Driver Information
Step 13 Click Next.

Step 14 The installation may issue the following prompt:

Digital Signature Not Found

Step 15 Click Yes.

Step 16 The installation may issue the following prompt:

The file avaudio32.dll on Windows NT Setup Disk #1 is needed,
Type the path where the file is located and then click ok.

If so, enter the same location as where you chose OEMSETUP.INF and click OK.

Step 17 Click Yes.

Step 18 Click Finish.

Step 19 Click Yes to restart.

Procedure for Windows NT

Step 1 Before you add the Cisco wave driver, you must save the wave driver information from the registry in a
separate file as described in the “Saving Wave Driver Information” section.

Step 2 Open the Control Panel.

Step 3 Double-click Multimedia.

Step 4 Click Next.

Step 5 Click Add.

Step 6 Click Unlisted or Updated Driver.

Step 7 Click OK.

Step 8 Click Browse and change to the Wave Drivers folder in the folder where the Cisco Unified TSP is
installed.

Step 9 Click OK. Follow the online instruction, but do not restart the system when prompted.

Step 10 Examine the contents of the registry to verify the new driver was installed and the old drivers still exist,
as described in the “Verifying the Wave Driver Exists” section.

Step 11 Restart the computer.

Saving Wave Driver Information
Use the following steps to save wave driver information from the registry in a separate file. You must
perform this procedure when installing or uninstalling the Cisco wave driver on a Windows NT
computer.

Procedure

Step 1 Click Start > Run.

Step 2 In the text box, enter regedit.
2-15
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Verifying the Wave Driver Exists
Step 3 Click OK.

Step 4 Choose the Drivers32 key that is located in the following path:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\ CurrentVersion

Step 5 Choose Registry > Export Registry File.

Step 6 Enter a filename and choose the location to save.

Step 7 Click Save.

The file receives a .reg extension.

Verifying the Wave Driver Exists
When you install or uninstall the Cisco wave driver, you must verify whether it exists on your system.
Use these steps to verify whether the wave driver exists.

Procedure

Step 1 Click Start > Run.

Step 2 In the text box, enter regedit.

Step 3 Click OK.

Step 4 Choose the Drivers32 key located in the following path:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\ CurrentVersion

Step 5 If you are installing the wave driver, make sure that the driver “avaudio32.dll” displays in the data
column. If you are uninstalling the wave driver, make sure that the driver “avaudio32.dll does not
display in the data column. This designates the Cisco wave driver.

Step 6 Verify that the previously existing wave values appear in the data column for wave1, wave2, wave3, and
so on. You can compare this registry list to the contents of the .reg file that you saved in the “Saving
Wave Driver Information” procedure by opening the .reg file in a text editor and viewing it and the
registry window side by side.

Step 7 If necessary, add the appropriate waveX string values for any missing wave values that should be
installed on the system. For each missing wave value, choose
Edit > New > String Value and enter a value name. Then, choose Edit > Modify, enter the value data,
and click OK.

Step 8 Close the registry by choosing Registry > Exit.

Verifying the Cisco Unified TSP Installation
You can use the Microsoft Windows Phone Dialer Application to verify that the Cisco Unified TSP is
operational. For Windows NT and Windows 2000, locate the dialer application in
C:\Program Files\Windows NT\dialer.exe

For windows 95 and Windows 98, locate the dialer application in C:\Windows\dialer.exe
2-16
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Setting Up Client-Server Configuration
Procedure For Windows 2000 and Windows XP

Step 1 Open the Dialer application by locating it in Windows Explorer and double-clicking it.

Step 2 Choose Edit > Options.

Step 3 Choose Phone as the Preferred Line for Calling.

Step 4 In the Line Used For area, choose one Cisco Line in the Phone Calls drop-down menu.

Step 5 Click OK.

Step 6 Click Dial.

Step 7 Enter a number to dial, choose Phone Call in the Dial as box, and then click Place Call.

Procedure for Windows NT, Windows 98, and Windows 95

Step 1 Open the Dialer application by locating it in Windows Explorer and double-clicking it:

A dialog box appears that requests the line and address that you want to use. If no lines are listed in the
Line drop-down list box, a problem may exist between the Cisco Unified TSP and the
Cisco Unified CallManager.

Step 2 Choose a line from the Line drop-down menu. Make sure Address is set to Address 0.

Step 3 Click OK.

Step 4 Enter a number to dial.

If the call is successful, you have verified that the Cisco Unified TSP is operational on the machine
where the Cisco Unified TSP is installed.

If you encounter problems during this procedure, or if no lines appear in the line drop-down list on the
dialer application, check the following items:

• Make sure that the Cisco Unified TSP is configured properly.

• Test the network link between the Cisco Unified TSP and the Cisco Unified CallManager by using
the ping command to check connectivity.

• Make sure that the Cisco Unified CallManager server is functioning.

Setting Up Client-Server Configuration
For information on setting up a client-server configuration (Remote TSP) in Windows 2000, refer to the
Microsoft Windows Help feature. For information on client-server configuration in Windows NT, refer
to Microsoft White Papers.
2-17
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Uninstalling the Wave Driver
Uninstalling the Wave Driver
To remove the Cisco wave driver, perform the following steps.

Procedure for Windows XP

Step 1 Open the Control Panel.

Step 2 Select Sound and Audio Devices.

Step 3 Click the Hardware tab.

Step 4 Select Cisco TAPI Wave Driver.

Step 5 Click Properties.

Step 6 Click the Driver tab.

Step 7 Click Uninstall and OK to remove.

Step 8 If the Cisco TAPI Wave Driver entry is still displayed, close and open the window again to verify that
it has been removed.

Step 9 Restart the computer.

Procedure for Windows 2000

Step 1 Open the Control Panel.

Step 2 Double-click Add/Remove Hardware.

Step 3 Click Next.

Step 4 Choose Uninstall/Unplug a device and click Next.

Step 5 Choose Uninstall a device and click Next.

Step 6 Choose Cisco TAPI Wave Driver and click Next.

Step 7 Choose Yes, I want to uninstall this device and click Next.

Step 8 Click Finish.

Step 9 Restart the computer.

Procedure for Windows NT

Step 1 Before you uninstall the Cisco wave driver, you must save the wave driver information from the registry
in a separate file. For information on how to save the wave drive information to a separate file, see the
“Saving Wave Driver Information” section.

Step 2 After the registry information is saved, open the Control Panel.

Step 3 Double-click Multimedia.

Step 4 Click the Devices tab.

Step 5 To view all the audio devices, click the ‘+’ symbol next to Audio Devices.

Step 6 Click Audio for Cisco Sound System.
2-18
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Removing the Cisco Unified TSP
Step 7 Click Remove.

Step 8 Click Finish. Do not restart the system.

Step 9 Verify that the Cisco wave driver was removed and the old drivers still exist. For information on how to
do this, see the “Verifying the Wave Driver Exists” section.

Note When you verify the removal of the driver, make sure that Cisco wave driver “avaudio32.dll”
does not appear in the data column.

Step 10 Restart the computer.

Removing the Cisco Unified TSP
This process removes the Cisco Unified TSP from the provider list but does not uninstall the TSP. To
make these changes, perform the following steps.

Procedure for Windows 2000

Step 1 Open the Control Panel.

Step 2 Double-click the Phone and Modem icon.

Step 3 Click the Advanced tab.

Step 4 Choose the Cisco Unified TSP that you want to remove.

Step 5 To delete the Cisco Unified TSP from the list, click Remove.

Procedure for Windows NT, Windows 98, and Windows 95

Step 1 Open the Control Panel.

Step 2 Double-click the Telephony icon.

Step 3 Click the Advanced tab.

Step 4 Choose the Cisco Unified TSP that you want to remove.

Step 5 To delete the Cisco Unified TSP from the list, click Remove.
2-19
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Managing the Cisco Unified TSP
Managing the Cisco Unified TSP
You can perform the following actions on all installed TSPs:

• Reinstall the existing Cisco Unified TSP version

• Upgrade to the newer version of the Cisco Unified TSP

• Uninstall the Cisco Unified TSP

You cannot change the number of installed Cisco Unified TSPs when you reinstall or upgrade the
Cisco Unified TSPs.

Related Topics

• Reinstalling the Cisco Unified TSP

• Upgrading the Cisco Unified TSP

• Auto Update for Cisco Unified TSP Upgrades

• Uninstalling the Cisco Unified TSP

Reinstalling the Cisco Unified TSP
Use the following procedure to reinstall the Cisco Unified TSP on all supported platforms.

Procedure

Step 1 Open the Control Panel and double-click Add/Remove Programs.

Step 2 Choose Cisco Unified TSP and click Add/Remove.

The Cisco Unified TSP maintenance install dialog box displays.

Step 3 Click Reinstall TSP 4.1(X.X) radio button and click Next.

Step 4 Follow the online instructions.

Note If TSP files are already locked, the installation program prompts you to restart the computer.

Upgrading the Cisco Unified TSP
Use the following procedure to upgrade the Cisco Unified TSP on all supported platforms.

Procedure

Step 1 Choose the type of installation for Cisco Unified CallManager TSP 4.1(X.X).

Step 2 Choose Upgrade from TSP X.X(X.X) option radio button and click Next.

Step 3 Follow the online instructions.

Note If TSP files are already locked, the installation program prompts you to restart the computer.
2-20
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Managing the Cisco Unified TSP
Step 4 The CiscoTSP maintenance install dialog box displays.

If CiscoTSP.exe contains different version of Cisco Unified TSP than you have installed, the installation
program displays one of the following prompts, depending upon the previous Cisco Unified TSP
version:

Choose the type of installation for TSP Version 4.1(X.X).

• If the previous installed version is Cisco Unified TSP 3.1(X.X), the following prompt displays:

Upgrade from TSP 3.1(X.X)

• If the previous installed version is Cisco Unified TSP 3.2(X.X), the following prompt displays:

Upgrade from TSP 3.2(X.X)

• If the previous installed version is Cisco Unified TSP 3.3(X.X), the following prompt displays:

Upgrade from 3.3(X.X)

• If the previous installed version is Cisco Unified TSP 4.1(X.X), the following prompt displays:

Upgrade from TSP 4.1(X.X)

Auto Update for Cisco Unified TSP Upgrades
CiscoTSP supports auto update functionality, so the latest plugin can be downloaded and installed on
the client machine. When the Cisco Unified CallManager is upgraded to a higher version, and CiscoTSP
auto update functionality is enabled, the latest compatible CiscoTSP is available, which is compatible
with the upgraded CallManager. This ensures that the applications work as expected with the new release
of Cisco Unified CallManager (provided the new call manager interface is backward compatible with
the TAPI interface). The CiscoTSP that is installed locally on the client server allows the application to
set the auto update options as part of the CiscoTSP configuration. You can opt for updating the CiscoTSP
in the following different ways.

• Update CiscoTSP whenever a different (has to be higher version that existing) version is available
on the Cisco Unified CallManager server.

• Update CiscoTSP whenever a QBE protocol version mismatch occurs between the existing
CiscoTSP and the Cisco Unified CallManager version.

• Do not update CiscoTSP by using the auto update functionality.

AutoInstall Behavior

As part of initialization of CiscoTSP, when the application does lineInitializeEx, CiscoTSP queries the
current TSP plugin version information that is available on Cisco Unified CallManager server. Once this
information is available, CiscoTSP compares the installed CiscoTSP version with the plugin version. If
user chose an option for Auto Update, CiscoTSP triggers the update process. As part of Auto Update,
CiscoTSP behaves in the following ways on different platforms.

Windows 95, Windows 98, Windows ME

Because CiscoTSP is in use and locked when the application does lineInitializeEx, the auto update
process requests that you close all the running applications to install the new TSP version on the client
setup. When all the running applications get closed, CiscoTSP auto update process can continue, and
2-21
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Managing the Cisco Unified TSP
you will be informed about the upgrade success. If the running applications do not get closed and the
installation continues, the new version of CiscoTSP will not get installed, and a corresponding error gets
reported to the applications.

Windows NT

After CiscoTSP detects that an upgradeable version is available on the Cisco Unified CallManager
server and Auto Update gets chosen, CiscoTSP reports 0 lines to the application and removes the
CiscoTSP provider from the provider list. It will then try to stop the telephony service to avoid any
locked files during Auto Update. If the telephony service can be stopped, CiscoTSP gets silently auto
updated and the service restarted. Applications must be reinitialized in order to start using the CiscoTSP.
If the telephony service could not be stopped, CiscoTSP installs the new version and displays a message
to restart the system. You must restart the system in order to use the new CiscoTSP.

Windows 2000 or XP

After CiscoTSP detects that an upgradeable version is available on the Cisco Unified CallManager
server and Auto Update option gets chosen, CiscoTSP reports 0 lines to the application and removes the
CiscoTSP provider from the provider list. If a new TSP version is detected during the reconnect time,
the running applications receive LINE_REMOVE on all the lines, which are already initialized and are
in OutOfService state. CiscoTSP silently upgrades to the new version that was downloaded from the
Cisco Unified CallManager and puts the CiscoTSP provider back on the provider list. All the running
applications receive LINE_CREATE messages.

WinXP supports multiple user logon sessions (fast user switching); however, this release supports Auto
Update only for the first logon user. If multiple active logon sessions exist, CiscoTSP only supports the
Auto Update functionality for the first logged-on user.

Note If a user has multiple CiscoTSPs installed on the client machine, only the first CiscoTSP instance is
enabled to set up the Auto Update configuration. All CiscoTSPs get upgraded to a common version upon
version mismatch. From “Control Panel/Phone & Modem Options/Advanced/CiscoTSP001,” the
General window displays the options for Auto Update.

Because it is a CTI service parameter, which can be configured, you can change the Plugin location to
a different machine than the Cisco Unified CallManager server. The default is
“//<CMServer>//ccmpluginsserver”.

If Silent upgrade fails on any listed platforms for any reason (such as locked files that are encountered
during upgrade on Win95/98/ME), the old CiscoTSP provider(s) do not get put back on the provider list
to avoid any looping of the Auto Update process. Ensure that the update options get cleared and the
providers get added to provider list manually. Update the CiscoTSP manually or by fixing the problem(s)
encountered during Auto Update and reinitializing Cisco Unified TAPI to trigger the Auto Update
process.

Note TSPAutoInstall.exe has user interface screens and can proceed to display these screens only when the
telephony service enables the LocalSystem logon option with “Allow Service to interact with Desktop”.
If the logon option is not set as LocalSystem or logon option is LocalSystem but “Allow Service to
interact with Desktop” is disabled, CiscoTSP cannot launch the AutoInstall UI windows and will not
continue with AutoInstall.
2-22
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Managing the Cisco Unified TSP
Ensure that the following logon options are set for the telephony service.

Step 1 Logon as: LocalSystem.

Step 2 Enable the check box: “Allow Service to interact with Desktop.”

These telephony service settings, when changed, requires manual restart of the service to take effect.

Step 3 If, after changing the settings to above values, the service does not restart, CiscoTSP checks for “Allow
Service to interact with user” to be positive (as the configuration is updated for the service in the
database), but AutoInstall UI cannot display. CiscoTSP continues to put the entry for
TSPAutoInstall.exe under Registry key RUNONCE. This will help autoinstall to run when the machine
reboots the next time.

Uninstalling the Cisco Unified TSP
Use the following procedure to uninstall the Cisco Unified TSP on all supported platforms.

Procedure

Step 1 Open the Control Panel and double-click Add/Remove Programs.

Step 2 Choose Cisco Unified TSP and click Add/Remove.

The Cisco Unified TSP maintenance install dialog box displays.

Step 3 Choose Uninstall: Remove the installed TSP radio button and click Next.

Step 4 Follow the online instructions.

Note If TSP files are already locked, the installation program prompts you to restart the computer.
2-23
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 2 Cisco Unified TAPI Installation
 Managing the Cisco Unified TSP
2-24
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Cisco Unified TAPI Developers G
OL-9442-01
C H A P T E R 3

Cisco Unified TAPI Implementation

The Cisco Unified TAPI implementation comprises a set of classes that expose the functionality of the
Cisco Unified Communications Solutions. This API allows developers to create customized IP
Telephony applications for Cisco Unified CallManager without specific knowledge of the
communication protocols between the Cisco Unified CallManager and the service provider. For
example, a developer could create a TAPI application that communicates with an external voice
messaging system.

This chapter outlines the TAPI 2.1 functions, events, and messages that the Cisco Unified TAPI Service
Provider supports. The Cisco Unified TAPI implementation contains functions in the following areas:

• TAPI Line Functions

• TAPI Line Messages

• TAPI Line Device Structures

• TAPI Phone Functions

• TAPI Phone Messages

• TAPI Phone Structures

• Wave
3-1
uide for Cisco Unified CallManager 5.0

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
TAPI Line Functions
The number of TAPI devices that are configured in the Cisco Unified CallManager determines the
number of available lines. To terminate an audio stream by using first-party control, you must first install
the Cisco wave device driver.

Table 3-1 TAPI Line Functions Supported

TAPI Line Functions Supported

lineAccept

lineAddProvider

lineAddToConference

lineAnswer

lineBlindTransfer

lineCallbackFunc

lineClose

lineCompleteTransfer

lineConfigProvider

lineDeallocateCall

lineDevSpecific

lineDial

lineDrop

lineForward

lineGenerateDigits

lineGenerateTone

lineGetAddressCaps

lineGetAddressID

lineGetAddressStatus

lineGetCallInfo

lineGetCallStatus

lineGetConfRelatedCalls

lineGetDevCaps

lineGetID

lineGetLineDevStatus

lineGetMessage

lineGetNewCalls

lineGetNumRings

lineGetProviderList

lineGetRequest

lineGetStatusMessages
3-2
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineGetTranslateCaps

lineHandoff

lineHold

lineInitialize

lineInitializeEx

lineMakeCall

lineMonitorDigits

lineMonitorTones

lineNegotiateAPIVersion

lineNegotiateExtVersion

lineOpen

linePark

linePrepareAddToConference

lineRedirect

lineRegisterRequestRecipient

lineRemoveProvider

lineSetAppPriority

lineSetCallPrivilege

lineSetNumRings

lineSetStatusMessages

lineSetTollList

lineSetupConference

lineSetupTransfer

lineShutdown

lineTranslateAddress

lineTranslateDialog

lineUnhold

lineUnpark

Table 3-1 TAPI Line Functions Supported (continued)

TAPI Line Functions Supported
3-3
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineAccept

Description

The lineAccept function accepts the specified offered call.

Function Details

LONG lineAccept(
 HCALL hCall,
 LPCSTR lpsUserUserInfo,
 DWORD dwSize
);

Parameters

hCall

A handle to the call to be accepted. The application must be an owner of the call. Call state of hCall
must be offering.

lpsUserUserInfo

A pointer to a string that contains user-user information to be sent to the remote party as part of the
call accept. Leave this pointer NULL if no user-user information is to be sent. User-user information
only gets sent if supported by the underlying network. The protocol discriminator member for the
user-user information, if required, should appear as the first byte of the buffer that is pointed to by
lpsUserUserInfo and must be accounted for in dwSize.

Note The Cisco Unified TSP does not support user-user information.

dwSize

The size in bytes of the user-user information in lpsUserUserInfo. If lpsUserUserInfo is NULL, no
user-user information gets sent to the calling party, and dwSize is ignored.

lineAddProvider

Description

The lineAddProvider function installs a new telephony service provider into the telephony system.

Function Details

LONG WINAPI lineAddProvider(
 LPCSTR lpszProviderFilename,
 HWND hwndOwner,
 LPDWORD lpdwPermanentProviderID
);
3-4
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Parameters

lpszProviderFilename

A pointer to a null-terminated string that contains the path of the service provider to be added.

hwndOwner

A handle to a window in which any dialog boxes that need to be displayed as part of the installation
process (for example, by the service provider's TSPI_providerInstall function) would be attached.
Can be NULL to indicate that any window created during the function should have no owner
window.

lpdwPermanentProviderID

A pointer to a DWORD-sized memory location into which TAPI writes the permanent provider
identifier of the newly installed service provider.

Return Values

Returns zero if request succeeds or a negative error number if an error occurs. Possible return values are:

• LINEERR_INIFILECORRUPT

• LINEERR_NOMEM

• LINEERR_INVALPARAM

• LINEERR_NOMULTIPLEINSTANCE

• LINEERR_INVALPOINTER

• LINEERR_OPERATIONFAILED

lineAddToConference

Description

This function takes the consult call that is specified by hConsultCall and adds it to the conference call
that is specified by hConfCall.

Function Details
LONG lineAddToConference(
 HCALL hConfCall,
 HCALL hConsultCall
);

Parameters

hConfCall

A pointer to the conference call handle. The state of the conference call must be
OnHoldPendingConference or OnHold.

hConsultCall

A pointer to the consult call that will be added to the conference call. The application must be the
owner of this call, and it cannot be a member of another conference call. The allowed states of the
consult call comprise connected, onHold, proceeding, or ringback
3-5
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineAnswer

Description

The lineAnswer function answers the specified offering call.

Note CallProcessing requires previous calls on the device to be in connected call state before answering
further calls on the same device. If calls are answered without checking for the call state of previous calls
on the same device, then Cisco Unified TSP might return a successful answer response but the call will
not go to connected state and needs to be answered again.

Function Details

LONG lineAnswer(
 HCALL hCall,
 LPCSTR lpsUserUserInfo,
 DWORD dwSize
);

Parameters

hCall

A handle to the call to be answered. The application must be an owner of this call. The call state of
hCall must be offering or accepted.

lpsUserUserInfo

A pointer to a string that contains user-user information to be sent to the remote party at the time the
call is answered. You can leave this pointer NULL if no user-user information will be sent.

User-user information only gets sent if supported by the underlying network. The protocol
discriminator field for the user-user information, if required, should be the first byte of the buffer
that is pointed to by lpsUserUserInfo and must be accounted for in dwSize.

Note The Cisco Unified TSP does not support user-user information.

dwSize

The size in bytes of the user-user information in lpsUserUserInfo. If lpsUserUserInfo is NULL, no
user-user information gets sent to the calling party, and dwSize is ignored.

lineBlindTransfer

Description

The lineBlindTransfer function performs a blind or single-step transfer of the specified call to the
specified destination address.
3-6
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Note The lineBlindTransfer function that is implemented until Cisco Unified TSP 3.3 does not comply with
the TAPI specification. This function actually gets implemented as a consultation transfer and not a
single-step transfer. From Cisco Unified TSP 4.0, the lineBlindTransfer complies with the TAPI specs
wherein the transfer is a single-step transfer.

If the application tries to blind transfer a call to an address that requires a FAC, CMC, or both, then the
lineBlindTransfer function will return an error. If a FAC is required, the TSP will return the error
LINEERR_FACREQUIRED. If a CMC is required, the TSP will return the error
LINEERR_CMCREQUIRED. If both a FAC and a CMC is required, the TSP will return the error
LINEERR_FACANDCMCREQUIRED. An application that wishes to blind transfer a call to an address
that requires a FAC, CMC, or both, should use the lineDevSpecific - BlindTransferFACCMC function.

Function Details

LONG lineBlindTransfer(
HCALL hCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode

);

Parameters

hCall

A handle to the call to be transferred. The application must be an owner of this call. The call state
of hCall must be connected.

lpszDestAddress

A pointer to a NULL-terminated string that identifies the location to which the call is to be
transferred. The destination address uses the standard dial number format.

dwCountryCode

The country code of the destination. The implementation uses this parameter to select the call
progress protocols for the destination address. If a value of 0 is specified, the defined default
call-progress protocol is used.

lineCallbackFunc

Description

The lineCallbackFunc function provides a placeholder for the application-supplied function name.

Function Details
VOID FAR PASCAL lineCallbackFunc(
 DWORD hDevice,
 DWORD dwMsg,
 DWORD dwCallbackInstance,
 DWORD dwParam1,
 DWORD dwParam2,
 DWORD dwParam3
);
3-7
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Parameters

hDevice

A handle to either a line device or a call that is associated with the callback. The context provided
by dwMsg determines thee nature of this handle (line handle or call handle). Applications must use
the DWORD type for this parameter because using the HANDLE type may generate an error.

dwMsg

A line or call device message.

dwCallbackInstance

Callback instance data that is passed back to the application in the callback. TAPI does not interpret
DWORD.

dwParam1

A parameter for the message.

dwParam2

A parameter for the message.

dwParam3

A parameter for the message.

Further Details

For information about parameter values that are passed to this function, see “TAPI Line Functions.”

lineClose

Description

The lineClose function closes the specified open line device.

Function Details

LONG lineClose(
HLINE hLine

);

Parameter

hLine

A handle to the open line device to be closed. After the line has been successfully closed, this handle
is no longer valid.
3-8
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineCompleteTransfer

Description

The lineCompleteTransfer function completes the transfer of the specified call to the party that is
connected in the consultation call.

Function Details

LONG lineCompleteTransfer(
HCALL hCall,
HCALL hConsultCall,
LPHCALL lphConfCall,
DWORD dwTransferMode

);

Parameters

hCall

A handle to the call to be transferred. The application must be an owner of this call. The call state
of hCall must be onHold, onHoldPendingTransfer.

hConsultCall

A handle to the call that represents a connection with the destination of the transfer. The application
must be an owner of this call. The call state of hConsultCall must be connected, ringback, busy, or
proceeding.

lphConfCall

A pointer to a memory location where an hCall handle can be returned. If dwTransferMode is
LINETRANSFERMODE_CONFERENCE, the newly created conference call is returned in
lphConfCall and the application becomes the sole owner of the conference call. Otherwise, this
parameter gets ignored by TAPI.

dwTransferMode

Specifies how the initiated transfer request is to be resolved. This parameter uses the following
LINETRANSFERMODE_ constant:

– LINETRANSFERMODE_TRANSFER - Resolve the initiated transfer by transferring the initial
call to the consultation call.

– LINETRANSFERMODE_CONFERENCE - The transfer gets resolved by establishing a
three-way conference between the application, the party connected to the initial call, and the
party connected to the consultation call. Selecting this option creates a conference call.
3-9
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineConfigProvider

Description

The lineConfigProvider function causes a service provider to display its configuration dialog box. This
basically provides a straight pass-through to TSPI_providerConfig.

Function Details

LONG WINAPI lineConfigProvider(
 HWND hwndOwner,
 DWORD dwPermanentProviderID
);

Parameters

hwndOwner

A handle to a window to which the configuration dialog box (displayed by TSPI_providerConfig)
is attached. This parameter can be NULL to indicate that any window that is created during the
function should have no owner window.

dwPermanentProviderID

The permanent provider identifier of the service provider to be configured.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

• LINEERR_INIFILECORRUPT

• LINEERR_NOMEM

• LINEERR_INVALPARAM

• LINEERR_OPERATIONFAILED
3-10
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineDeallocateCall

Description

The lineDeallocateCall function deallocates the specified call handle.

Function Details

LONG lineDeallocateCall(
HCALL hCall

);

Parameter

hCall

The call handle to be deallocated. An application with monitoring privileges for a call can always
deallocate its handle for that call. An application with owner privilege for a call can deallocate its
handle unless it is the sole owner of the call and the call is not in the idle state. The call handle is
no longer valid after it has been deallocated.

lineDevSpecific

Description

The lineDevSpecific function enables service providers to provide access to features that other TAPI
functions do not offer. The extensions are device specific, and taking advantage of these extensions
requires the application to be fully aware of them.

When used with the Cisco Unified TSP, lineDevSpecific can be used to

• Enable the message waiting lamp for a particular line.

• Handle the audio stream (instead of using the provided Cisco wave driver).

• Turn On or Off the reporting of Media Streaming messages for a particular line.

• Register a CTI port or route point for dynamic media termination.

• Set the IP address and the UDP port of a call at a CTI port or route point with dynamic media
termination.

• Redirect a Call and Reset the OriginalCalledID of the call to the party that is the destination of the
redirect.

• Redirect a call and set the OriginalCalledID of the call to any party.

• Join two or more calls into one conference call.

• Redirect a Call to a destination that requires a FAC, CMC, or both.

• Blind Transfer a Call to a destination that requires a FAC, CMC, or both.

• Open a CTI Port in Third Party Mode.
3-11
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Note In Cisco Unified TSP Releases 4.0 and later, the TSP no longer supports the ability to perform a
SwapHold/SetupTransfer on two calls on a line in the CONNECTED and the ONHOLD call states so
that these calls can be transferred using lineCompleteTransfer. Cisco Unified TSP Releases 4.0 and later
support the ability to transfer these calls using the lineCompleteTransfer function without having to
perform the SwapHold/SetupTransfer beforehand.

Function Details

LONG lineDevSpecific(
HLINE hLine,
DWORD dwAddressID,
HCALL hCall,
LPVOID lpParams,
DWORD dwSize

);

Parameters

hLine

A handle to a line device. This parameter is required.

dwAddressID

An address identifier on the given line device.

hCall

A handle to a call. Although this parameter is optional, it is specified, the call that it represents must
belong to the hLine line device. The call state of hCall is device specific.

lpParams

A pointer to a memory area that is used to hold a parameter block. The format of this parameter
block specifies device specific, and TAPI passes its contents to or from the service provider.

dwSize

The size in bytes of the parameter block area.

lineDial

Description

The lineDial function dials the specified number on the specified call.

This function can be used by the application to enter a FAC or CMC. The FAC or CMC can be entered
one digit at a time or multiple digits at a time. The application may also enter both the FAC and CMC
if required in one lineDial() request as long as the FAC and CMC are separated by a “#” character. If
sending both a FAC and CMC in one lineDial() request, it is recommended to terminate the
lpszDestAddress with a “#” character in order to avoid waiting for the T.302 interdigit timeout.

This function cannot be used to enter a dial string along with a FAC and/or a CMC. The FAC and/or
CMC must be entered in a separate lineDial request.
3-12
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Function Details

LONG lineDial(
 HCALL hCall,
 LPCSTR lpszDestAddress,
 DWORD dwCountryCode
);

Parameters

hCall

A handle to the call on which a number is to be dialed. The application must be an owner of the call.
The call state of hCall can be any state except idle and disconnected.

lpszDestAddress

The destination to be dialed by using the standard dial number format.

dwCountryCode

The country code of the destination. The implementation uses this code to select the call progress
protocols for the destination address. If a value of 0 is specified, the default call progress protocol
is used.

lineDrop

Description

The lineDrop function drops or disconnects the specified call. The application can specify user-user
information to be transmitted as part of the call disconnect.

Function Details

LONG lineDrop(
 HCALL hCall,
 LPCSTR lpsUserUserInfo,
 DWORD dwSize
);

Parameters

hCall

A handle to the call to be dropped. The application must be an owner of the call. The call state of
hCall can be any state except idle.

lpsUserUserInfo

A pointer to a string that contains user-user information to be sent to the remote party as part of the
call disconnect. This pointer can be left NULL if no user-user information is to be sent. User-user
information only gets sent if supported by the underlying network. The protocol discriminator field
for the user-user information, if required, should appear as the first byte of the buffer that is pointed
to by lpsUserUserInfo and must be accounted for in dwSize.
3-13
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Note The Cisco Unified TSP does not support user-user information.

dwSize

The size in bytes of the user-user information in lpsUserUserInfo. If lpsUserUserInfo is NULL, no
user-user information gets sent to the calling party, and dwSize is ignored.

lineForward

Description

The lineForward function forwards calls that are destined for the specified address on the specified line,
according to the specified forwarding instructions. When an originating address (dwAddressID) is
forwarded, the switch deflects the specified incoming calls for that address to the other number. This
function provides a combination of forward all feature. This API allows calls to be forwarded
unconditionally to a forwarded destination. This function can also cancel forwarding currently in effect.

To indicate that the forward is set/reset, upon completion of lineForward, TAPI fires
LINEADDRESSSTATE events that indicate the change in the line forward status.

Change forward destination with a call to lineForward without canceling the current forwarding set on
that line.

Note lineForward implementation of Cisco Unified TSP allows setting up only one type for forward as
dwForwardMode = UNCOND. The lpLineForwardList data structure accepts LINEFORWARD entry
with dwForwardMode = UNCOND.

Function Details

LONG lineForward(
 HLINE hLine,
 DWORD bAllAddresses,
 DWORD dwAddressID,
 LPLINEFORWARDLIST const lpForwardList,
 DWORD dwNumRingsNoAnswer,
 LPHCALL lphConsultCall,
 LPLINECALLPARAMS const lpCallParams
);

Parameters

hLine

A handle to the line device.

bAllAddresses

Specifies whether all originating addresses on the line or just the one that is specified are to be
forwarded. If TRUE, all addresses on the line get forwarded, and dwAddressID is ignored; if
FALSE, only the address that is specified as dwAddressID gets forwarded.
3-14
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
dwAddressID

The address of the specified line whose incoming calls are to be forwarded. This parameter gets
ignored if bAllAddresses is TRUE.

Note If bAllAddresses is FALSE, dwAddressID must be 0.

lpForwardList

A pointer to a variably sized data structure that describes the specific forwarding instructions of type
LINEFORWARDLIST.

Note To cancel the forwarding that currently is in effect, ensure lpForwardList Parameter is set to NULL.

dwNumRingsNoAnswer

The number of rings before a call is considered a "no answer." If dwNumRingsNoAnswer is out of
range, the actual value gets set to the nearest value in the allowable range.

Note This parameter does not get used because this version of Cisco Unified TSP does not support call
forward no answer.

lphConsultCall

A pointer to an HCALL location. In some telephony environments, this location is loaded with a
handle to a consultation call that is used to consult the party that is being forwarded to, and the
application becomes the initial sole owner of this call. This pointer must be valid even in
environments where call forwarding does not require a consultation call. This handle is set to NULL
if no consultation call is created.

Note This parameter also gets ignored because we do not create a consult call for setting up lineForward.

lpCallParams

A pointer to a structure of type LINECALLPARAMS. This pointer gets ignored unless lineForward
requires the establishment of a call to the forwarding destination (and lphConsultCall is returned; in
which case, lpCallParams is optional). If NULL, default call parameters get used. Otherwise, the
specified call parameters get used for establishing hConsultCall.

Note This parameter must be NULL for this version of Cisco Unified TSP because we do not create a consult
call.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

• LINEERR_INVALLINEHANDLE

• LINEERR_NOMEM

• LINEERR_INVALADDRESSID
3-15
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALADDRESS

• LINEERR_OPERATIONFAILED

• LINEERR_INVALCOUNTRYCODE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER

• LINEERR_STRUCTURETOOSMALL

• LINEERR_INVALPARAM

• LINEERR_UNINITIALIZED

Note For lpForwardList[0].dwForwardMode other than UNCOND, lineForward returns
LINEERR_OPERATIONUNAVAIL. For lpForwardList.dwNumEntries more than 1, lineForward
returns LINEERR_INVALPARAM

lineGenerateDigits

Description

The lineGenerateDigits function initiates the generation of the specified digits on the specified call as
out-of-band tones by using the specified signaling mode.

Note The Cisco Unified TSP supports neither invoking this function with a NULL value for lpszDigits to
abort a digit generation that is currently in progress nor invoking lineGenerateDigits while digit
generation is in progress. Cisco Unified IP Phones pass DTMF digits out of band. This means that the
tone does not get injected into the audio stream (in-band) but is sent as a message in the control stream.
The phone on the far end then injects the tone into the audio stream to present it to the user. CTI port
devices do not inject DTMF tones. Also, be aware that some gateways will not inject DTMF tones into
the audio stream on the way out of the LAN.

Function Details

LONG lineGenerateDigits(
 HCALL hCall,
 DWORD dwDigitMode,
 LPCSTR lpszDigits,
 DWORD dwDuration
);

Parameters

hCall

A handle to the call. The application must be an owner of the call. Call state of hCall can be any
state.
3-16
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
dwDigitMode

The format to be used for signaling these digits. The dwDigitMode can have only a single flag set.
This parameter uses the following LINEDIGITMODE_ constant:

– LINEDIGITMODE_DTMF - Uses DTMF tones for digit signaling. Valid digits for DTMF
mode include ‘0’ - ‘9’, ‘*’, ‘#’.

lpszDigits

Valid characters for DTMF mode in the Cisco Unified TSP include ‘0’ through ‘9’, ‘*’, and ‘#’.

dwDuration

Duration in milliseconds during which the tone should be sustained.

Note Cisco Unified TSP does not support dwDuration.

lineGenerateTone

Description

The lineGenerateTone function generates the specified tone over the specified call.

Note The Cisco Unified TSP supports neither invoking this function with a 0 value for dwToneMode to abort
a tone generation that is currently in progress nor invoking lineGenerateTone while tone generation is
in progress. Cisco IP phones pass tones out of band. This means that the tone does not get injected into
the audio stream (in-band) but is sent as a message in the control stream. The phone on the far end then
injects the tone into the audio stream to present it to the user. Also, be aware that some gateways will
not inject tones into the audio stream on the way out of the LAN.

Function Details
LONG lineGenerateTone(
 HCALL hCall,
 DWORD dwToneMode,
 DWORD dwDuration,
 DWORD dwNumTones,
 LPLINEGENERATETONE const lpTones
);

Parameters

hCall

A handle to the call on which a tone is to be generated. The application must be an owner of the call.
The call state of hCall can be any state.

dwToneMode

Defines the tone to be generated. Tones can be either standard or custom. A custom tone comprises
a set of arbitrary frequencies. A small number of standard tones are predefined. The duration of the
tone gets specified with dwDuration for both standard and custom tones. The dwToneMode
parameter can have only one bit set. If no bits are set (the value 0 is passed), tone generation gets
canceled.
3-17
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
This parameter uses the following LINETONEMODE_ constant:

– LINETONEMODE_BEEP - The tone is a beep, as used to announce the beginning of a
recording. The service provider defines the exact beep tone.

dwDuration

Duration in milliseconds during which the tone should be sustained.

Note Cisco Unified TSP does not support dwDuration.

dwNumTones

The number of entries in the lpTones array. This parameter is ignored if dwToneMode ≠ CUSTOM.

lpTones

A pointer to a LINEGENERATETONE array that specifies the components of the tone. This
parameter gets ignored for non-custom tones. If lpTones is a multifrequency tone, the various tones
play simultaneously.

lineGetAddressCaps

Description

The lineGetAddressCaps function queries the specified address on the specified line device to determine
its telephony capabilities.

Function Details

LONG lineGetAddressCaps(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAddressID,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 LPLINEADDRESSCAPS lpAddressCaps
);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device that contains the address to be queried. Only one address gets supported per line, so
dwAddressID must be zero.

dwAddressID

The address on the given line device whose capabilities are to be queried.

dwAPIVersion

The version number, obtained by lineNegotiateAPIVersion, of the API to be used. The high-order
word contains the major version number; the low-order word contains the minor version number.
3-18
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
dwExtVersion

The version number of the extensions to be used. This number can be left zero if no device-specific
extensions are to be used. Otherwise, the high-order word contains the major version number and
the low-order word contains the minor version number.

lpAddressCaps

A pointer to a variably sized structure of type LINEADDRESSCAPS. Upon successful completion
of the request, this structure gets filled with address capabilities information. Prior to calling
lineGetAddressCaps, the application should set the dwTotalSize member of this structure to indicate
the amount of memory that is available to TAPI for returning information.

lineGetAddressID

Description

The lineGetAddressID function returns the address identifier that is associated with an address in a
different format on the specified line.

Function Details

LONG lineGetAddressID(
 HLINE hLine,
 LPDWORD lpdwAddressID,
 DWORD dwAddressMode,
 LPCSTR lpsAddress,
 DWORD dwSize
);

Parameters

hLine

A handle to the open line device.

lpdwAddressID

A pointer to a DWORD-sized memory location that returns the address identifier.

dwAddressMode

The address mode of the address that is contained in lpsAddress. The dwAddressMode parameter
can have only a single flag set. This parameter uses the following LINEADDRESSMODE_
constant:

– LINEADDRESSMODE_DIALABLEADDR - The address is specified by its dialable address.
The lpsAddress parameter represents the dialable address or canonical address format.

lpsAddress

A pointer to a data structure that holds the address that is assigned to the specified line device.
dwAddressMode determines the format of the address. Because the only valid value is
LINEADDRESSMODE_DIALABLEADDR, lpsAddress uses the common dialable number format
and is NULL-terminated.

dwSize

The size of the address that is contained in lpsAddress.
3-19
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineGetAddressStatus

Description

The lineGetAddressStatus function allows an application to query the specified address for its current
status.

Function Details

LONG lineGetAddressStatus(
 HLINE hLine,
 DWORD dwAddressID,
 LPLINEADDRESSSTATUS lpAddressStatus
);

Parameters

hLine

A handle to the open line device.

dwAddressID

An address on the given open line device. This is the address to be queried.

lpAddressStatus

A pointer to a variably sized data structure of type LINEADDRESSSTATUS. Prior to calling
lineGetAddressStatus, the application should set the dwTotalSize member of this structure to
indicate the amount of memory that is available to TAPI for returning information.

lineGetCallInfo

Description

The lineGetCallInfo function enables an application to obtain fixed information about the specified call.

Function Details

LONG lineGetCallInfo(
 HCALL hCall,
 LPLINECALLINFO lpCallInfo
);

Parameters

hCall

A handle to the call to be queried. The call state of hCall can be any state.
3-20
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lpCallInfo

A pointer to a variably sized data structure of type LINECALLINFO. Upon successful completion
of the request, call-related information fills this structure. Prior to calling lineGetCallInfo, the
application should set the dwTotalSize member of this structure to indicate the amount of memory
that is available to TAPI for returning information.

lineGetCallStatus

Description

The lineGetCallStatus function returns the current status of the specified call.

Function Details
LONG lineGetCallStatus(
 HCALL hCall,
 LPLINECALLSTATUS lpCallStatus
);

Parameters

hCall

A handle to the call to be queried. The call state of hCall can be any state.

lpCallStatus

A pointer to a variably sized data structure of type LINECALLSTATUS. Upon successful
completion of the request, call status information fills this structure. Prior to calling
lineGetCallStatus, the application should set the dwTotalSize member of this structure to indicate
the amount of memory available to TAPI for returning information.

lineGetConfRelatedCalls

Description

The lineGetConfRelatedCalls function returns a list of call handles that are part of the same conference
call as the specified call. The specified call represents either a conference call or a participant call in a
conference call. New handles get generated for those calls for which the application does not already
have handles, and the application receives monitor privilege to those calls.

Function Details

LONG WINAPI lineGetConfRelatedCalls(
 HCALL hCall,
 LPLINECALLLIST lpCallList
);
3-21
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Parameters

hCall

A handle to a call. This represents either a conference call or a participant call in a conference call.
For a conference parent call, the call state of hCall can be any state. For a conference participant
call, it must be in the conferenced state.

lpCallList

A pointer to a variably sized data structure of type LINECALLLIST. Upon successful completion
of the request, call handles to all calls in the conference call return in this structure. The first call in
the list represents the conference call, the other calls represent the participant calls. The application
receives monitor privilege to those calls for which it does not already have handles; the privileges
to calls in the list for which the application already has handles remains unchanged. Prior to calling
lineGetConfRelatedCalls, the application should set the dwTotalSize member of this structure to
indicate the amount of memory that is available to TAPI for returning information.

Return Values

Returns zero if request succeeds or a negative error number if an error occurs. Possible return values are:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_NOCONFERENCE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER

• LINEERR_STRUCTURETOOSMALL

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED

lineGetDevCaps

Description

The lineGetDevCaps function queries a specified line device to determine its telephony capabilities. The
returned information applies for all addresses on the line device.

Function Details

LONG lineGetDevCaps(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 LPLINEDEVCAPS lpLineDevCaps
);
3-22
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device to be queried.

dwAPIVersion

The version number, obtained by lineNegotiateAPIVersion, of the API to be used. The high-order
word contains the major version number; the low-order word contains the minor version number.

dwExtVersion

The version number, obtained by lineNegotiateExtVersion, of the extensions to be used. It can be
left zero if no device-specific extensions are to be used. Otherwise, the high-order word contains the
major version number; the low-order word contains the minor version number.

lpLineDevCaps

A pointer to a variably sized structure of type LINEDEVCAPS. Upon successful completion of the
request, this structure gets filled with line device capabilities information. Prior to calling
lineGetDevCaps, the application should set the dwTotalSize member of this structure to indicate the
amount of memory that is available to TAPI for returning information.

lineGetID

Description

The lineGetID function returns a device identifier for the specified device class that is associated with
the selected line, address, or call.

Function Details
LONG lineGetID(
 HLINE hLine,
 DWORD dwAddressID,
 HCALL hCall,
 DWORD dwSelect,
 LPVARSTRING lpDeviceID,
 LPCSTR lpszDeviceClass
);

Parameters

hLine

A handle to an open line device.

dwAddressID

An address on the given open line device.

hCall

A handle to a call.
3-23
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
dwSelect

Specifies whether the requested device identifier is associated with the line, address or a single call.
The dwSelect parameter can only have a single flag set. This parameter uses the following
LINECALLSELECT_ constants:

– LINECALLSELECT_LINE Selects the specified line device. The hLine parameter must be a
valid line handle; hCall and dwAddressID are ignored.

– LINECALLSELECT_ADDRESS Selects the specified address on the line. Both hLine and
dwAddressID must be valid; hCall is ignored.

– LINECALLSELECT_CALL Selects the specified call. hCall must be valid; hLine and
dwAddressID are both ignored.

lpDeviceID

A pointer to a memory location of type VARSTRING, where the device identifier is returned. Upon
successful completion of the request, the device identifier fills this location. The format of the
returned information depends on the method the device class API uses for naming devices. Prior to
calling lineGetID, the application should set the dwTotalSize member of this structure to indicate
the amount of memory that is available to TAPI for returning information.

lpszDeviceClass

A pointer to a NULL-terminated ASCII string that specifies the device class of the device whose
identifier is requested. Device classes include wave/in, wave/out and tapi/line.

Valid device class strings are those that are used in the SYSTEM.INI section to identify device
classes.

lineGetLineDevStatus

Description

The lineGetLineDevStatus function enables an application to query the specified open line device for its
current status.

Function Details
LONG lineGetLineDevStatus(
 HLINE hLine,
 LPLINEDEVSTATUS lpLineDevStatus
);

Parameters

hLine

A handle to the open line device to be queried.

lpLineDevStatus

A pointer to a variably sized data structure of type LINEDEVSTATUS. Upon successful completion
of the request, the device status of the line fills this structure. Prior to calling lineGetLineDevStatus,
the application should set the dwTotalSize member of this structure to indicate the amount of
memory that is available to TAPI for returning information.
3-24
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineGetMessage

Description

The lineGetMessage function returns the next TAPI message that is queued for delivery to an application
that is using the Event Handle notification mechanism (see lineInitializeEx for further details).

Function Details
LONG WINAPI lineGetMessage(
 HLINEAPP hLineApp,
 LPLINEMESSAGE lpMessage,
 DWORD dwTimeout
);

Parameters

hLineApp

The handle returned by lineInitializeEx. The application must have set the
LINEINITIALIZEEXOPTION_USEEVENT option in the dwOptions member of the
LINEINITIALIZEEXPARAMS structure.

lpMessage

A pointer to a LINEMESSAGE structure. Upon successful return from this function, the structure
contains the next message that had been queued for delivery to the application.

dwTimeout

The time-out interval, in milliseconds. The function returns if the interval elapses, even if no
message can be returned. If dwTimeout is zero, the function checks for a queued message and
returns immediately. If dwTimeout is INFINITE, the function's time-out interval never elapses.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

• LINEERR_INVALAPPHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPOINTER

• LINEERR_NOMEM
3-25
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineGetNewCalls

Description

The lineGetNewCalls function returns call handles to calls on a specified line or address for which the
application currently does not have handles. The application receives monitor privilege for these calls.

An application can use lineGetNewCalls to obtain handles to calls for which it currently has no handles.
The application can select the calls for which handles are to be returned by basing this selection on scope
(calls on a specified line, or calls on a specified address). For example, an application can request call
handles to all calls on a given address for which it currently has no handle.

Function Details

LONG WINAPI lineGetNewCalls(
 HLINE hLine,
 DWORD dwAddressID,
 DWORD dwSelect,
 LPLINECALLLIST lpCallList
);

Parameters

hLine

A handle to an open line device.

dwAddressID

An address on the given open line device. An address identifier permanently associates with an
address; the identifier remains constant across operating system upgrades.

dwSelect

The selection of calls that are requested. This parameter uses one and only one of the
LINECALLSELECT_ Constants.

lpCallList

A pointer to a variably sized data structure of type LINECALLLIST. Upon successful completion
of the request, call handles to all selected calls get returned in this structure. Prior to calling
lineGetNewCalls, the application should set the dwTotalSize member of this structure to indicate
the amount of memory that is available to TAPI for returning information.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

• LINEERR_INVALADDRESSID

• LINEERR_OPERATIONFAILED

• LINEERR_INVALCALLSELECT

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALLINEHANDLE
3-26
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
• LINEERR_STRUCTURETOOSMALL

• LINEERR_INVALPOINTER

• LINEERR_UNINITIALIZED

• LINEERR_NOMEM

lineGetNumRings

Description

The lineGetNumRings function determines the number of rings that an incoming call on the given
address should ring before the call is answered.

Function Details

LONG WINAPI lineGetNumRings(
 HLINE hLine,
 DWORD dwAddressID,
 LPDWORD lpdwNumRings
);

Parameters

hLine

A handle to the open line device.

dwAddressID

An address on the line device. An address identifier permanently associates with an address; the
identifier remains constant across operating system upgrades.

lpdwNumRings

The number of rings that is the minimum of all current lineSetNumRings requests.

Return Values

Returns zero if request succeeds or a negative error number if an error occurs. Possible return values are:

• LINEERR_INVALADDRESSID

• LINEERR_OPERATIONFAILED

• LINEERR_INVALLINEHANDLE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER

• LINEERR_UNINITIALIZED

• LINEERR_NOMEM
3-27
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineGetProviderList

Description

The lineGetProviderList function returns a list of service providers that are currently installed in the
telephony system.

Function Details
LONG WINAPI lineGetProviderList(
 DWORD dwAPIVersion,
 LPLINEPROVIDERLIST lpProviderList
);

Parameters

dwAPIVersion

The highest version of TAPI that the application supports (not necessarily the value that
lineNegotiateAPIVersion negotiates on some particular line device).

lpProviderList

A pointer to a memory location where TAPI can return a LINEPROVIDERLIST structure. Prior to
calling lineGetProviderList, the application should set the dwTotalSize member of this structure to
indicate the amount of memory that is available to TAPI for returning information.

Return Values

Returns zero if request succeeds or a negative error number if an error occurs. Possible return values are:

• LINEERR_INCOMPATIBLEAPIVERSION

• LINEERR_NOMEM

• LINEERR_INIFILECORRUPT

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPOINTER

• LINEERR_STRUCTURETOOSMALL

lineGetRequest

Description

The lineGetRequest function retrieves the next by-proxy request for the specified request mode.

Function Details
LONG WINAPI lineGetRequest(
 HLINEAPP hLineApp,
 DWORD dwRequestMode,
 LPVOID lpRequestBuffer
);
3-28
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Parameters

hLineApp

 The application's usage handle for the line portion of TAPI.

dwRequestMode

The type of request that is to be obtained. dwRequestMode can have only one bit set. This parameter
uses one and only one of the
LINEREQUESTMODE_ Constants.

lpRequestBuffer

A pointer to a memory buffer where the parameters of the request are to be placed. The size of the
buffer and the interpretation of the information that is placed in the buffer depends on the request
mode. The application-allocated buffer provides sufficient size to hold the request. If
dwRequestMode is LINEREQUESTMODE_MAKECALL, interpret the content of the request
buffer by using the LINEREQMAKECALL structure. If dwRequestMode is
LINEREQUESTMODE_MEDIACALL, interpret the content of the request buffer by using the
LINEREQMEDIACALL structure.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

• LINEERR_INVALAPPHANDLE

• LINEERR_NOTREGISTERED

• LINEERR_INVALPOINTER

• LINEERR_OPERATIONFAILED

• LINEERR_INVALREQUESTMODE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED

• LINEERR_NOREQUEST

lineGetStatusMessages

Description

The lineGetStatusMessages function enables an application to query which notification messages the
application is set up to receive for events that relate to status changes for the specified line or any of its
addresses.

Function Details
LONG WINAPI lineGetStatusMessages(
 HLINE hLine,
 LPDWORD lpdwLineStates,
 LPDWORD lpdwAddressStates
);
3-29
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Parameters

hLine

Handle to the line device.

lpdwLineStates

A bit array that identifies for which line device status changes a message is to be sent to the
application. If a flag is TRUE, that message is enabled; if FALSE, it is disabled. This parameter uses
one or more of the LINEDEVSTATE_ Constants.

lpdwAddressStates

A bit array that identifies for which address status changes a message is to be sent to the application.
If a flag is TRUE, that message is enabled; if FALSE, disabled. This parameter uses one or more of
the LINEADDRESSSTATE_ Constants.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

• LINEERR_INVALLINEHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPOINTER

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED

lineGetTranslateCaps

Description

The lineGetTranslateCaps function returns address translation capabilities.

Function Details

LONG WINAPI lineGetTranslateCaps(
 HLINEAPP hLineApp,
 DWORD dwAPIVersion,
 LPLINETRANSLATECAPS lpTranslateCaps
);

Parameters

hLineApp

The application handle returned by lineInitializeEx. If an application has not yet called the
lineInitializeEx function, it can set the hLineApp parameter to NULL.
3-30
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
dwAPIVersion

The highest version of TAPI that the application supports (not necessarily the value that
lineNegotiateAPIVersion negotiates on some particular line device).

lpTranslateCaps

A pointer to a location to which a LINETRANSLATECAPS structure is loaded. Prior to calling
lineGetTranslateCaps, the application should set the dwTotalSize member of this structure to
indicate the amount of memory that is available to TAPI for returning information.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

• LINEERR_INCOMPATIBLEAPIVERSION

• LINEERR_NOMEM

• LINEERR_INIFILECORRUPT

• LINEERR_OPERATIONFAILED

• LINEERR_INVALAPPHANDLE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER

• LINEERR_STRUCTURETOOSMALL

• LINEERR_NODRIVER.

lineHandoff

Description

The lineHandoff function gives ownership of the specified call to another application. The application
can be either specified directly by its file name or indirectly as the highest priority application that
handles calls of the specified media mode.

Function Details

LONG WINAPI lineHandoff(
 HCALL hCall,
 LPCSTR lpszFileName,
 DWORD dwMediaMode
);

Parameters

hCall

A handle to the call to be handed off. The application must be an owner of the call. The call state of
hCall can be any state.
3-31
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lpszFileName

A pointer to a null-terminated string. If this pointer parameter is non-NULL, it contains the file name
of the application that is the target of the handoff. If NULL, the handoff target represents the highest
priority application that has opened the line for owner privilege for the specified media mode. A
valid file name does not include the path of the file.

dwMediaMode

The media mode that is used to identify the target for the indirect handoff. The dwMediaMode
parameter indirectly identifies the target application that is to receive ownership of the call. This
parameter gets ignored if lpszFileName is not NULL. This parameter uses one and only one of the
LINEMEDIAMODE_ Constants.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return
values are:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALMEDIAMODE

• LINEERR_TARGETNOTFOUND

• LINEERR_INVALPOINTER

• LINEERR_TARGETSELF

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED

• LINEERR_NOTOWNER

lineHold

Description

The lineHold function places the specified call on hold.

Function Details

LONG lineHold(
 HCALL hCall
);

Parameter

hCall

A handle to the call that is to be placed on hold. Ensure the application is an owner of the call and
the call state of hCall is connected.
3-32
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineInitialize

Description

Although the lineInitialize function is obsolete, tapi.dll and tapi32.dll continue to export it for backward
compatibility with applications that are using API versions 1.3 and 1.4.

Function Details

LONG WINAPI lineInitialize(
 LPHLINEAPP lphLineApp,
 HINSTANCE hInstance,
 LINECALLBACK lpfnCallback,
 LPCSTR lpszAppName,
 LPDWORD lpdwNumDevs
);

Parameters

lphLineApp

A pointer to a location that is filled with the application's usage handle for TAPI.

hInstance

The instance handle of the client application or DLL.

lpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls. For more information, see lineCallbackFunc.

lpszAppName

A pointer to a null-terminated text string that contains only displayable characters. If this parameter
is not NULL, it contains an application-supplied name for the application. The LINECALLINFO
structure provides this name to indicate, in a user-friendly way, which application originated,
originally accepted, or answered the call. This information can prove useful for call logging
purposes. If lpszAppName is NULL, the application's file name gets used instead.

lpdwNumDevs

A pointer to a DWORD-sized location. Upon successful completion of this request, this location
gets filled with the number of line devices that is available to the application.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

• LINEERR_INVALAPPNAME

• LINEERR_OPERATIONFAILED

• LINEERR_INIFILECORRUPT

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER
3-33
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
• LINEERR_REINIT

• LINEERR_NODRIVER

• LINEERR_NODEVICE

• LINEERR_NOMEM

• LINEERR_NOMULTIPLEINSTANCE.

lineInitializeEx

Description

The lineInitializeEx function initializes the use of TAPI by the application for the subsequent use of the
line abstraction. It registers the specified notification mechanism of the application and returns the
number of line devices that are available. A line device represents any device that provides an
implementation for the line-prefixed functions in the Telephony API.

Function Details

LONG lineInitializeEx(
 LPHLINEAPP lphLineApp,
 HINSTANCE hInstance,
 LINECALLBACK lpfnCallback,
 LPCSTR lpszFriendlyAppName,
 LPDWORD lpdwNumDevs,
 LPDWORD lpdwAPIVersion,
 LPLINEINITIALIZEEXPARAMS lpLineInitializeExParams
);

Parameters

lphLineApp

A pointer to a location that is filled with the TAPI usage handle for the application.

hInstance

The instance handle of the client application or DLL. The application or DLL can pass NULL for
this parameter, in which case TAPI uses the module handle of the root executable of the process (for
purposes of identifying call hand-off targets and media mode priorities).

lpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls, when the application is using the “hidden window” method of event notification.
This parameter gets ignored and should be set to NULL when the application chooses to use the
“event handle” or “completion port” event notification mechanisms.

lpszFriendlyAppName

A pointer to a NULL-terminated ASCII string that contains only standard ASCII characters. If this
parameter is not NULL, it contains an application-supplied name for the application. The
LINECALLINFO structure provides this name to indicate, in a user-friendly way, which application
originated, originally accepted, or answered the call. This information can prove useful for
call-logging purposes. If lpszFriendlyAppName is NULL, the module filename of the application
gets used instead (as returned by the Windows API GetModuleFileName).
3-34
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lpdwNumDevs

A pointer to a DWORD-sized location. Upon successful completion of this request, this location
gets filled with the number of line devices that are available to the application.

lpdwAPIVersion

A pointer to a DWORD-sized location. The application must initialize this DWORD, before calling
this function, to the highest API version that it is designed to support (for example, the same value
that it would pass into dwAPIHighVersion parameter of lineNegotiateAPIVersion). Make sure that
artificially high values are not used; the value must be set to 0x00020000. TAPI translates any newer
messages or structures into values or formats that the application supports. Upon successful
completion of this request, this location is filled with the highest API version that TAPI supports,
allowing the application to adapt to being installed on a system with an older TAPI version.

lpLineInitializeExParams

A pointer to a structure of type LINEINITIALIZEEXPARAMS that contains additional Parameters
that are used to establish the association between the application and TAPI (specifically, the selected
event notification mechanism of the application and associated parameters).

lineMakeCall

Description

The lineMakeCall function places a call on the specified line to the specified destination address.
Optionally, you can specify call parameters if anything but default call setup parameters are requested.

Function Details
LONG lineMakeCall(
 HLINE hLine,
 LPHCALL lphCall,
 LPCSTR lpszDestAddress,
 DWORD dwCountryCode,
 LPLINECALLPARAMS const lpCallParams
);

Parameters

hLine

A handle to the open line device on which a call is to be originated.

lphCall

A pointer to an HCALL handle. The handle is only valid after the application receives
LINE_REPLY message that indicates that the lineMakeCall function successfully completed. Use
this handle to identify the call when invoking other telephony operations on the call. The application
initially acts as the sole owner of this call. This handle registers as void if the function returns an
error (synchronously or asynchronously by the reply message).

lpszDestAddress

A pointer to the destination address. This parameter follows the standard dialable number format.
This pointer can be NULL for non-dialed addresses or when all dialing is performed by using
lineDial. In the latter case, lineMakeCall allocates an available call appearance that would typically
remain in the dial tone state until dialing begins.
3-35
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
dwCountryCode

The country code of the called party. If a value of 0 is specified, the implementation uses a default.

lpCallParams

The dwNoAnswerTimeout attribute of the lpCallParams field is checked and if is non-zero, used to
automatically disconnect a call if it is not answered after the specified time.

lineMonitorDigits

Description

The lineMonitorDigits function enables and disables the unbuffered detection of digits that are received
on the call. Each time that a digit of the specified digit mode is detected, a message gets sent to the
application to indicate which digit has been detected.

Function Details

LONG lineMonitorDigits(
 HCALL hCall,
 DWORD dwDigitModes
);

Parameters

hCall

A handle to the call on which digits are to be detected. The call state of hCall can be any state except
idle or disconnected.

dwDigitModes

The digit mode or modes that are to be monitored. If dwDigitModes is zero, the system cancels digit
monitoring. This parameter can have multiple flags set and uses the following LINEDIGITMODE_
constant:

LINEDIGITMODE_DTMF - Detect digits as DTMF tones. Valid digits for DTMF include ‘0’
through ‘9’, ‘*’, and ‘#’.

lineMonitorTones

Description

The lineMonitorTones function enables and disables the detection of inband tones on the call. Each time
that a specified tone is detected, a message gets sent to the application.

Function Details
LONG lineMonitorTones(
 HCALL hCall,
 LPLINEMONITORTONE const lpToneList,
 DWORD dwNumEntries
);
3-36
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Parameters

hCall

A handle to the call on which tones are to be detected. The call state of hCall can be any state except
idle.

lpToneList

A list of tones to be monitored, of type LINEMONITORTONE. Each tone in this list has an
application-defined tag field that is used to identify individual tones in the list to report a tone
detection. Calling this operation with either NULL for lpToneList or with another tone list cancels
or changes tone monitoring in progress.

dwNumEntries

The number of entries in lpToneList. This parameter gets ignored if lpToneList is NULL.

lineNegotiateAPIVersion

Description

The lineNegotiateAPIVersion function allows an application to negotiate an API version to use. The
Cisco Unified TSP supports TAPI 2.0 and 2.1.

Function Details
LONG lineNegotiateAPIVersion(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPILowVersion,
 DWORD dwAPIHighVersion,
 LPDWORD lpdwAPIVersion,
 LPLINEEXTENSIONID lpExtensionID
);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device to be queried.

dwAPILowVersion

The least recent API version with which the application is compliant. The high-order word specifies
the major version number; the low-order word specifies the minor version number.

dwAPIHighVersion

The most recent API version with which the application is compliant. The high-order word specifies
the major version number; the low-order word specifies the minor version number.

lpdwAPIVersion

A pointer to a DWORD-sized location that contains the API version number that was negotiated. If
negotiation succeeds, this number falls in the range between dwAPILowVersion and
dwAPIHighVersion.
3-37
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lpExtensionID

A pointer to a structure of type LINEEXTENSIONID. If the service provider for the specified
dwDeviceID supports provider-specific extensions, upon a successful negotiation, this structure
gets filled with the extension identifier of these extensions. This structure contains all zeros if the
line provides no extensions. An application can ignore the returned parameter if it does not use
extensions.

The Cisco Unified TSP extensionID specifies 0x8EBD6A50, 0x138011d2, 0x905B0060,
0xB03DD275.

lineNegotiateExtVersion

Description

The lineNegotiateExtVersion function allows an application to negotiate an extension version to use
with the specified line device. Do not call this operation if the application does not support extensions.

Function Details
LONG lineNegotiateExtVersion(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 DWORD dwExtLowVersion,
 DWORD dwExtHighVersion,
 LPDWORD lpdwExtVersion
);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device to be queried.

dwAPIVersion

The API version number that was negotiated for the specified line device by using
lineNegotiateAPIVersion.

dwExtLowVersion

The least recent extension version of the extension identifier returned by lineNegotiateAPIVersion
with which the application is compliant. The high-order word specifies the major version number;
the low-order word specifies the minor version number.

dwExtHighVersion

The most recent extension version of the extension identifier returned by lineNegotiateAPIVersion
with which the application is compliant. The high-order word specifies the major version number;
the low-order word specifies the minor version number.

lpdwExtVersion

A pointer to a DWORD-sized location that contains the extension version number that was
negotiated. If negotiation succeeds, this number falls between dwExtLowVersion and
dwExtHighVersion.
3-38
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineOpen

Description

The lineOpen function opens the line device that its device identifier specifies and returns a line handle
for the corresponding opened line device. Subsequent operations on the line device use this line handle.

Function Details

LONG lineOpen(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 LPHLINE lphLine,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 DWORD dwCallbackInstance,
 DWORD dwPrivileges,
 DWORD dwMediaModes,
 LPLINECALLPARAMS const lpCallParams
);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

Identifies the line device to be opened. It either can be a valid device identifier or the value

LINEMAPPER

Note The Cisco Unified TSP does not support LINEMAPPER at this time.

lphLine

A pointer to an HLINE handle that is then loaded with the handle representing the opened line
device. Use this handle to identify the device when you are invoking other functions on the open
line device.

dwAPIVersion

The API version number under which the application and Telephony API operate. Obtain this
number with lineNegotiateAPIVersion.

dwExtVersion

The extension version number under which the application and the service provider operate. This
number remains zero if the application does not use any extensions. Obtain this number with
lineNegotiateExtVersion.

dwCallbackInstance

User-instance data that is passed back to the application with each message that is associated with
this line or with addresses or calls on this line. The Telephony API does not interpret this parameter.
3-39
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
dwPrivileges

The privilege that the application wants for the calls for which it is notified. This parameter can be
a combination of the LINECALLPRIVILEGE_ constants. For applications that are using TAPI
version 2.0 or later, values for this parameter can also be combined with the LINEOPENOPTION_
constants:

– LINECALLPRIVILEGE_NONE - The application can make only outgoing calls.

– LINECALLPRIVILEGE_MONITOR - The application can monitor only incoming and
outgoing calls.

– LINECALLPRIVILEGE_OWNER - The application can own only incoming calls of the types
that are specified in dwMediaModes.

– LINECALLPRIVILEGE_MONITOR + LINECALLPRIVILEGE_OWNER - The application
can own only incoming calls of the types that are specified in dwMediaModes, but if it is not
an owner of a call, it is a monitor.

– Other flag combinations return the LINEERR_INVALPRIVSELECT error.

dwMediaModes

The media mode or modes of interest to the application. Use this parameter to register the
application as a potential target for incoming call and call hand-off for the specified media mode.
This parameter proves meaningful only if the bit LINECALLPRIVILEGE_OWNER in
dwPrivileges is set (and ignored if it is not).

This parameter uses the following LINEMEDIAMODE_ constant:

– LINEMEDIAMODE_INTERACTIVEVOICE - The application can handle calls of the
interactive voice media type; that is, it manages voice calls with the user on this end of the call.
Use this parameter for third-party call control of physical phones and CTI port and CTI route
point devices that other applications opened.

– LINEMEDIAMODE_AUTOMATEDVOICE - Voice energy exists on the call. An automated
application locally handles the voice. This represents first-party call control and is used with
CTI port and CTI route point devices.

lpCallParams

The dwNoAnswerTimeout attribute of the lpCallParams field is checked and if is non-zero, used to
automatically disconnect a call if it is not answered after the specified time.

linePark

Description

The linePark function parks the specified call according to the specified park mode.

Function Details

LONG WINAPI linePark(
HCALL hCall,
DWORD dwParkMode,
LPCSTR lpszDirAddress,
LPVARSTRING lpNonDirAddress

);
3-40
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Parameters

hCall

Handle to the call to be parked. The application must act as an owner of the call. The call state of
hcall must be connected.

dwParkMode

Park mode with which the call is to be parked. This parameter can have only a single flag set and
uses one of the LINEPARKMODE_Constants.

Note LINEPARKMODE_Constants must be set to LINEPARKMODE_NONDIRECTED.

lpszDirAddress

Pointer to a null-terminated string that indicates the address where the call is to be parked when
directed park is used. The address specifies in dialable number format. This parameter gets ignored
for nondirected park.

Note This parameter gets ignored.

lpNonDirAddress

Pointer to a structure of type VARSTRING. For nondirected park, the address where the call is
parked gets returned in this structure. This parameter gets ignored for directed park. Within the
VARSTRING structure, dwStringFormat must be set to STRINGFORMAT_ASCII (an ASCII string
buffer that contains a null-terminated string), and the terminating NULL must be accounted for in
the dwStringSize. Before calling linePark, the application must set the dwTotalSize member of this
structure to indicate the amount of memory that is available to TAPI for returning information.

linePrepareAddToConference

Description

The linePrepareAddToConference function prepares an existing conference call for the addition of
another party.

If LINEERR_INVALLINESTATE is returned, that means that the line is currently not in a state in which
this operation can be performed. The dwLineFeatures member includes a list of currently valid
operations (of the type LINEFEATURE) in the LINEDEVSTATUS structure. (Calling
lineGetLineDevStatus updates the information in LINEDEVSTATUS.)

Obtain a conference call handle with lineSetupConference or with lineCompleteTransfer that is resolved
as a three-way conference call. The linePrepareAddToConference function typically places the existing
conference call in the onHoldPendingConference state and creates a consultation call that can be added
later to the existing conference call with lineAddToConference.

You can cancel the consultation call by using lineDrop. You may also be able to swap an application
between the consultation call and the held conference call with lineSwapHold.
3-41
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Function Details

LONG WINAPI linePrepareAddToConference(
 HCALL hConfCall,
 LPHCALL lphConsultCall,
 LPLINECALLPARAMS const lpCallParams
);

Parameters

hConfCall

A handle to a conference call. The application must act as an owner of this call. The call state of
hConfCall must be connected.

lphConsultCall

A pointer to an HCALL handle. This location then gets loaded with a handle that identifies the
consultation call to be added. Initially, the application serves as the sole owner of this call.

lpCallParams

A pointer to call parameters that gets used when the consultation call is established. This parameter
can be set to NULL if no special call setup parameters are desired.

Return Values

Returns a positive request identifier if the function is completed asynchronously, or a negative error
number if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY message
specifies zero if the function succeeds or it is a negative error number if an error occurs.

Possible return values follow:

• LINEERR_BEARERMODEUNAVAIL

• LINEERR_INVALPOINTER

• LINEERR_CALLUNAVAIL

• LINEERR_INVALRATE

• LINEERR_CONFERENCEFULL

• LINEERR_NOMEM

• LINEERR_INUSE

• LINEERR_NOTOWNER

• LINEERR_INVALADDRESSMODE

• LINEERR_OPERATIONUNAVAIL

• LINEERR_INVALBEARERMODE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALCALLPARAMS

• LINEERR_RATEUNAVAIL

• LINEERR_INVALCALLSTATE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALCONFCALLHANDLE
3-42
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
• LINEERR_STRUCTURETOOSMALL

• LINEERR_INVALLINESTATE

• LINEERR_USERUSERINFOTOOBIG

• LINEERR_INVALMEDIAMODE

• LINEERR_UNINITIALIZED

lineRedirect

Description

The lineRedirect function redirects the specified offered or accepted call to the specified destination
address.

Note If the application tries to redirect a call to an address that requires a FAC, CMC, or both, then the
lineRedirect function will return an error. If a FAC is required, the TSP will return the error
LINEERR_FACREQUIRED. If a CMC is required, the TSP will return the error
LINEERR_CMCREQUIRED. If both a FAC and a CMC is required, the TSP will return the error
LINEERR_FACANDCMCREQUIRED. An application that wishes to redirect a call to an address that
requires a FAC, CMC, or both, should use the lineDevSpecific - RedirectFACCMC function.

Function Details

LONG lineRedirect(
 HCALL hCall,
 LPCSTR lpszDestAddress,
 DWORD dwCountryCode
);

Parameters

hCall

A handle to the call to be redirected. The application must act as an owner of the call. The call state
of hCall must be offering, accepted, or connected.

Note The Cisco Unified TSP supports redirecting of calls in the connected call state.

lpszDestAddress

A pointer to the destination address. This follows the standard dialable number format.

dwCountryCode

The country code of the party to which the call is redirected. If a value of 0 is specified, the
implementation uses a default.
3-43
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineRegisterRequestRecipient

Description

The lineRegisterRequestRecipient function registers the invoking application as a recipient of requests
for the specified request mode.

Function Details

LONG WINAPI lineRegisterRequestRecipient(
 HLINEAPP hLineApp,
 DWORD dwRegistrationInstance,
 DWORD dwRequestMode,
 DWORD bEnable
);

Parameters

hLineApp

The application's usage handle for the line portion of TAPI.

dwRegistrationInstance

An application-specific DWORD that is passed back as a parameter of the LINE_REQUEST
message. This message notifies the application that a request is pending. This parameter gets
ignored if bEnable is set to zero. TAPI examines this parameter only for registration, not for
deregistration. The dwRegistrationInstance value that is used while deregistering need not match the
dwRegistrationInstance used while registering for a request mode.

dwRequestMode

The type or types of request for which the application registers. This parameter uses one or more
LINEREQUESTMODE_ Constants.

bEnable

If TRUE, the application registers the specified request modes; if FALSE, the application
deregisters for the specified request modes.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

• LINEERR_INVALAPPHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALREQUESTMODE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED
3-44
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineRemoveProvider

Description

The lineRemoveProvider function removes an existing telephony service provider from the system.

Function Details
LONG WINAPI lineRemoveProvider(
 DWORD dwPermanentProviderID,
 HWND hwndOwner
);

Parameters

dwPermanentProviderID

The permanent provider identifier of the service provider that is to be removed.

hwndOwner

A handle to a window to which any dialog boxes that need to be displayed as part of the removal
process (for example, a confirmation dialog box by the service provider's TSPI_providerRemove
function) would be attached. The parameter can be a NULL value to indicate that any window that
is created during the function should have no owner window.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

• LINEERR_INIFILECORRUPT

• LINEERR_NOMEM

• LINEERR_INVALPARAM

• LINEERR_OPERATIONFAILED

lineSetAppPriority

Description

The lineSetAppPriority function allows an application to set its priority in the handoff priority list for a
particular media type or Assisted Telephony request mode or to remove itself from the priority list.

Function Details
LONG WINAPI lineSetAppPriority(
 LPCSTR lpszAppFilename,
 DWORD dwMediaMode,
 LPLINEEXTENSIONID lpExtensionID,
 DWORD dwRequestMode,
 LPCSTR lpszExtensionName,
 DWORD dwPriority
);
3-45
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Parameters

lpszAppFilename

A pointer to a string that contains the application executable module filename (without directory
information). In TAPI version 2.0 or later, the parameter can specify a filename in either long or 8.3
filename format.

dwMediaMode

The media type for which the priority of the application is to be set. The value can be one
LINEMEDIAMODE_ Constant; only a single bit may be on. Use the value zero to set the
application priority for Assisted Telephony requests.

lpExtensionID

A pointer to a structure of type LINEEXTENSIONID. This parameter gets ignored.

dwRequestMode

If the dwMediaMode parameter is zero, this parameter specifies the Assisted Telephony request
mode for which priority is to be set. It must be either LINEREQUESTMODE_MAKECALL or
LINEREQUESTMODE_MEDIACALL. This parameter gets ignored if dwMediaMode is nonzero.

lpszExtensionName

This parameter gets ignored.

dwPriority

The new priority for the application. If the value 0 is passed, the application gets removed from the
priority list for the specified media or request mode (if it was already not present, no error gets
generated). If the value 1 is passed, the application gets inserted as the highest priority application
for the media or request mode (and removed from a lower-priority position, if it was already in the
list). Any other value generates an error.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

• LINEERR_INIFILECORRUPT

• LINEERR_INVALREQUESTMODE

• LINEERR_INVALAPPNAME

• LINEERR_NOMEM

• LINEERR_INVALMEDIAMODE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPARAM

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALPOINTER
3-46
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineSetCallPrivilege

Description

The lineSetCallPrivilege function sets the application's privilege to the specified privilege.

Function Details

LONG WINAPI lineSetCallPrivilege(
 HCALL hCall,
 DWORD dwCallPrivilege
);

Parameters

hCall

A handle to the call whose privilege is to be set. The call state of hCall can be any state.

dwCallPrivilege

The privilege that the application can have for the specified call. This parameter uses one and only
one LINECALLPRIVILEGE_ Constant.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

• LINEERR_INVALCALLHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALCALLSTATE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALCALLPRIVILEGE

• LINEERR_UNINITIALIZED

• LINEERR_NOMEM

lineSetNumRings

Description

The lineSetNumRings function sets the number of rings that must occur before an incoming call is
answered. Use this function to implement a toll-saver-style function. It allows multiple, independent
applications to each register the number of rings. The function lineGetNumRings returns the minimum
number of rings that are requested. The application that answers incoming calls can use it to determine
the number of rings that it should wait before answering the call.
3-47
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Function Details

LONG WINAPI lineSetNumRings(
 HLINE hLine,
 DWORD dwAddressID,
 DWORD dwNumRings
);

Parameters

hLine

A handle to the open line device.

dwAddressID

An address on the line device. An address identifier permanently associates with an address; the
identifier remains constant across operating system upgrades.

dwNumRings

The number of rings before a call should be answered to honor the toll-saver requests from all
applications.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

• LINEERR_INVALLINEHANDLE

• LINEERR_OPERATIONFAILED

• LINEERR_INVALADDRESSID

• LINEERR_RESOURCEUNAVAIL

• LINEERR_NOMEM

• LINEERR_UNINITIALIZED

lineSetStatusMessages

Description

The lineSetStatusMessages function enables an application to specify which notification messages to
receive for events that are related to status changes for the specified line or any of its addresses.

Function Details

LONG lineSetStatusMessages(
 HLINE hLine,
 DWORD dwLineStates,
 DWORD dwAddressStates
);
3-48
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Parameters

hLine

A handle to the line device.

dwLineStates

A bit array that identifies for which line-device status changes a message is to be sent to the
application. This parameter uses the following LINEDEVSTATE_ constants:

– LINEDEVSTATE_OTHER - Device-status items other than those listed below changed. The
application should check the current device status to determine which items changed.

– LINEDEVSTATE_RINGING - The switch tells the line to alert the user. Service providers
notify applications on each ring cycle by sending LINE_LINEDEVSTATE messages that
contain this constant. For example, in the United States, service providers send a message with
this constant every 6 seconds.

– LINEDEVSTATE_NUMCALLS - The number of calls on the line device changed.

– LINEDEVSTATE_REINIT - Items changed in the configuration of line devices. To become
aware of these changes (as with the appearance of new line devices) the application should
reinitialize its use of TAPI. New lineInitialize, lineInitializeEx, and lineOpen requests get
denied until applications have shut down their usage of TAPI. The hDevice parameter of the
LINE_LINEDEVSTATE message remains NULL for this state change as it applies to any of
the lines in the system. Because of the critical nature of LINEDEVSTATE_REINIT, such
messages cannot be masked, so the setting of this bit is ignored, and the messages always get
delivered to the application.

– LINEDEVSTATE_REMOVED - Indicates that the service provider is removing the device
from the system (most likely through user action, through a control panel or similar utility).
Normally, a LINE_CLOSE message on the device immediately follows
LINE_LINEDEVSTATE message with this value. Subsequent attempts to access the device
prior to TAPI being reinitialized result in LINEERR_NODEVICE being returned to the
application. If a service provider sends a LINE_LINEDEVSTATE message that contains this
value to TAPI, TAPI passes it along to applications that have negotiated TAPI version 1.4 or
later; applications negotiating a previous TAPI version do not receive any notification.

dwAddressStates

A bit array that identifies for which address status changes a message is to be sent to the application.
This parameter uses the following LINEADDRESSSTATE_ constant:

– LINEADDRESSSTATE_NUMCALLS - The number of calls on the address changed. This
change results from events such as a new incoming call, an outgoing call on the address, or a
call changing its hold status.
3-49
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineSetTollList

Description

The lineSetTollList function manipulates the toll list.

Function Details
LONG WINAPI lineSetTollList(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 LPCSTR lpszAddressIn,
 DWORD dwTollListOption
);

Parameters

hLineApp

The application handle that lineInitializeEx returns. If an application has not yet called the
lineInitializeEx function, it can set the hLineApp parameter to NULL.

dwDeviceID

The device identifier for the line device upon which the call is intended to be dialed, so variations
in dialing procedures on different lines can be applied to the translation process.

lpszAddressIn

A pointer to a null-terminated string that contains the address from which the prefix information is
to be extracted for processing. This parameter must not be NULL, and it must be in the canonical
address format.

dwTollListOption

The toll list operation to be performed. This parameter uses one and only one of the
LINETOLLLISTOPTION_ Constants.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

• LINEERR_BADDEVICEID

• LINEERR_NODRIVER

• LINEERR_INVALAPPHANDLE

• LINEERR_NOMEM

• LINEERR_INVALADDRESS

• LINEERR_OPERATIONFAILED

• LINEERR_INVALPARAM

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INIFILECORRUPT

• LINEERR_UNINITIALIZED

• LINEERR_INVALLOCATION
3-50
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineSetupConference

Description

The lineSetupConference function initiates a conference given an existing two-party call that the hCall
parameter specifies. A conference call and consult call are established and the handles return to the
application. Use the consult call to dial the third party and the conference call replaces the initial
two-party call. The application can also specify the destination address of the consult call that will allow
the PBX to dial the call for the application.

Function Details

LONG lineSetupConference (
HCALL hCall,
HLINE hLine,
LPHCALL lphConfCall,
LPHCALL lphConsultCall,
DWORD dwNumParties,
LPLINECALLPARAMS const lpCallParams
);

Parameters

hCall

The handle of the existing two-party call. The application must be the owner of the call.

hLine

The line on which the initial two-party call was made. This parameter does not get used because
hCall must be set.

lphConfCall

A pointer to the conference call handle. The service provider allocates this call and returns the
handle to the application.

lphConsultCall

A pointer to the consult call. If the application does not specify the destination address in the call
parameters, it should use this call handle to dial the consult call. If the destination address is
specified, the consult call will be made using this handle.

dwNumParties

The number of parties in the conference call. Currently the Cisco Unified TAPI Service Provider
supports a three-party conference call.

lpCallParams

The call parameters that are used to set up the consult call. The application can specify the
destination address if it wants the consult call to be dialed for it in the conference setup.
3-51
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineSetupTransfer

Description

The lineSetupTransfer function initiates a transfer of the call that the hCall parameter specifies. It
establishes a consultation call, lphConsultCall, on which the party can be dialed that can become the
destination of the transfer. The application acquires owner privilege to the lphConsultCall parameter.

Function Details

LONG lineSetupTransfer(
 HCALL hCall,
 LPHCALL lphConsultCall,
 LPLINECALLPARAMS const lpCallParams
);

Parameters

hCall

The handle of the call to be transferred. The application must be an owner of the call. The call state
of hCall must be connected.

lphConsultCall

A pointer to an hCall handle. This location is then loaded with a handle that identifies the temporary
consultation call. When setting up a call for transfer, a consultation call automatically gets allocated
that enables lineDial to dial the address that is associated with the new transfer destination of the
call. The originating party can carry on a conversation over this consultation call prior to completing
the transfer. The call state of hConsultCall does not apply.

This transfer procedure may not be valid for some line devices. The application may need to ignore
the new consultation call and remove the hold on an existing held call (using lineUnhold) to identify
the destination of the transfer. On switches that support cross-address call transfer, the consultation
call can exist on a different address than the call to be transferred. It may also be necessary that the
consultation call be set up as an entirely new call, by lineMakeCall, to the destination of the transfer.
The address capabilities of the call specifies which forms of transfer are available.

lpCallParams

The dwNoAnswerTimeout attribute of the lpCallParams field is checked and, if is non-zero, used to
automatically disconnect a call if it is not answered after the specified time.

lineShutdown

Description

The lineShutdown function shuts down the usage of the line abstraction of the API.

Function Details
LONG lineShutdown(
 HLINEAPP hLineApp
);
3-52
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Parameters

hLineApp

The usage handle of the application for the line API.

lineTranslateAddress

Description

The lineTranslateAddress function translates the specified address into another format.

Function Details
LONG WINAPI lineTranslateAddress(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 LPCSTR lpszAddressIn,
 DWORD dwCard,
 DWORD dwTranslateOptions,
 LPLINETRANSLATEOUTPUT lpTranslateOutput
);

Parameters

hLineApp

The application handle that lineInitializeEx returns. If a TAPI 2.0 application has not yet called the
lineInitializeEx function, it can set the hLineApp parameter to NULL. TAPI 1.4 applications must
still call lineInitialize first.

dwDeviceID

The device identifier for the line device upon which the call is intended to be dialed, so variations
in dialing procedures on different lines can be applied to the translation process.

dwAPIVersion

Indicates the highest version of TAPI that the application supports (not necessarily the value
negotiated by lineNegotiateAPIVersion on some particular line device).

lpszAddressIn

Pointer to a null-terminated string that contains the address from which the information is to be
extracted for translation. This parameter must be in either the canonical address format or an
arbitrary string of dialable digits (non-canonical). This parameter must not be NULL. If the
AddressIn contains a subaddress or name field, or additional addresses separated from the first
address by CR and LF characters, only the first address gets translated.

dwCard

The credit card to be used for dialing. This parameter proves valid only if the CARDOVERRIDE
bit is set in dwTranslateOptions. This parameter specifies the permanent identifier of a Card entry
in the [Cards] section in the registry (as obtained from lineTranslateCaps) that should be used
instead of the PreferredCardID that is specified in the definition of the CurrentLocation. It does not
cause the PreferredCardID parameter of the current Location entry in the registry to be modified;
the override applies only to the current translation operation. This parameter gets ignored if the
CARDOVERRIDE bit is not set in dwTranslateOptions.
3-53
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
dwTranslateOptions

The associated operations to be performed prior to the translation of the address into a dialable
string. This parameter uses one of the LINETRANSLATEOPTION_ Constants.

Note If you have set the LINETRANSLATEOPTION_CANCELCALLWAITING bit, also set the
LINECALLPARAMFLAGS_SECURE bit in the dwCallParamFlags member of the
LINECALLPARAMS structure (passed in to lineMakeCall through the lpCallParams
parameter). This action prevents the line device from using dialable digits to suppress call
interrupts.

lpTranslateOutput

A pointer to an application-allocated memory area to contain the output of the translation operation,
of type LINETRANSLATEOUTPUT. Prior to calling lineTranslateAddress, the application should
set the dwTotalSize member of this structure to indicate the amount of memory that is available to
TAPI for returning information.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

• LINEERR_BADDEVICEID

• LINEERR_INVALPOINTER

• LINEERR_INCOMPATIBLEAPIVERSION

• LINEERR_NODRIVER

• LINEERR_INIFILECORRUPT

• LINEERR_NOMEM

• LINEERR_INVALADDRESS

• LINEERR_OPERATIONFAILED

• LINEERR_INVALAPPHANDLE

• LINEERR_RESOURCEUNAVAIL

• LINEERR_INVALCARD

• LINEERR_STRUCTURETOOSMALL

• LINEERR_INVALPARAM

lineTranslateDialog

Description

The lineTranslateDialog function displays an application-modal dialog box that allows the user to
change the current location of a phone number that is about to be dialed, adjust location and calling card
parameters, and see the effect.
3-54
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
Function Details
LONG WINAPI lineTranslateDialog(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 HWND hwndOwner,
 LPCSTR lpszAddressIn
);

Parameters

hLineApp

The application handle that lineInitializeEx returns. If an application has not yet called the
lineInitializeEx function, it can set the hLineApp parameter to NULL.

dwDeviceID

The device identifier for the line device upon which the call is intended to be dialed, so variations
in dialing procedures on different lines can be applied to the translation process.

dwAPIVersion

Indicates the highest version of TAPI that the application supports (not necessarily the value that is
negotiated by lineNegotiateAPIVersion on the line device that is indicated by dwDeviceID).

hwndOwner

A handle to a window to which the dialog box is to be attached. Can be a NULL value to indicate
that any window that is created during the function should have no owner window.

lpszAddressIn

A pointer to a null-terminated string that contains a phone number that is used, in the lower portion
of the dialog box, to show the effect of the user's changes on the location parameters. The number
must be in canonical format; if noncanonical, the phone number portion of the dialog box does not
display. This pointer can be left NULL, in which case the phone number portion of the dialog box
does not display. If the lpszAddressIn parameter contains a subaddress or name field, or additional
addresses separated from the first address by CR and LF characters, only the first address gets used
in the dialog box.

Return Values

Returns zero if request succeeds or a negative error number if an error occurs. Possible return values are:

• LINEERR_BADDEVICEID

• LINEERR_INVALPARAM

• LINEERR_INCOMPATIBLEAPIVERSION

• LINEERR_INVALPOINTER

• LINEERR_INIFILECORRUPT

• LINEERR_NODRIVER

• LINEERR_INUSE

• LINEERR_NOMEM

• LINEERR_INVALADDRESS

• LINEERR_INVALAPPHANDLE

• LINEERR_OPERATIONFAILED
3-55
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Functions
lineUnhold

Description

The lineUnhold function retrieves the specified held call.

Function Details

LONG lineUnhold(
 HCALL hCall
);

Parameters

hCall

The handle to the call to be retrieved. The application must be an owner of this call. The call state
of hCall must be onHold, onHoldPendingTransfer, or onHoldPendingConference.

lineUnpark

Description

The lineUnpark function retrieves the call that is parked at the specified address and returns a call handle
for it.

Function Details

LONG WINAPI lineUnpark(
HLINE hLine,
DWORD dwAddressID,
LPHCALL lphCall,
LPCSTR lpszDestAddress

);

Parameters

hLine

Handle to the open line device on which a call is to be unparked.

dwAddressID

Address on hLine at which the unpark is to be originated. An address identifier permanently
associates with an address; the identifier remains constant across operating system upgrades.

lphCall

Pointer to the location of type HCALL where the handle to the unparked call is returned. This handle
is unrelated to any other handle that previously may have been associated with the retrieved call,
such as the handle that might have been associated with the call when it was originally parked. The
application acts as the initial sole owner of this call.
3-56
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Messages
lpszDestAddress

Pointer to a null-terminated character buffer that contains the address where the call is parked. The
address displays in standard dialable address format.

TAPI Line Messages
This section describes the line messages that the Cisco Unified TSP supports. These messages notify the
application of asynchronous events such as the a new call arriving in the Cisco Unified CallManager.
The messages get sent to the application using the method that the application specifies in
lineInitializeEx

.

LINE_ADDRESSSTATE

Description

The LINE_ADDRESSSTATE message gets sent when the status of an address changes on a line that is
currently open by the application. The application can invoke lineGetAddressStatus to determine the
current status of the address.

Function Details
LINE_ADDRESSSTATE
dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idAddress;
dwParam2 = (DWORD) AddressState;
dwParam3 = (DWORD) 0;

Table 3-2 TAPI Line Messages

TAPI Line Messages

LINE_ADDRESSSTATE

LINE_APPNEWCALL

LINE_CALLINFO

LINE_CALLSTATE

LINE_CLOSE

LINE_CREATE

LINE_DEVSPECIFIC

LINE_GENERATE

LINE_LINEDEVSTATE

LINE_MONITORDIGITS

LINE_MONITORTONE

LINE_REMOVE

LINE_REPLY

LINE_REQUEST
3-57
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Messages
Parameters

dwDevice

A handle to the line device.

dwCallbackInstance

The callback instance supplied when the line is opened.

dwParam1

The address identifier of the address that changed status.

dwParam2

The address state that changed. Can be a combination of these values:

LINEADDRESSSTATE_OTHER

Address-status items other than those listed below changed. The application should check the
current address status to determine which items changed.

LINEADDRESSSTATE_DEVSPECIFIC

The device-specific item of the address status changed.

LINEADDRESSSTATE_INUSEZERO

The address changed to idle (it is now in use by zero stations).

LINEADDRESSSTATE_INUSEONE

The address changed from idle or from being used by many bridged stations to being used by
just one station.

LINEADDRESSSTATE_INUSEMANY

The monitored or bridged address changed from being used by one station to being used by
more than one station.

LINEADDRESSSTATE_NUMCALLS

The number of calls on the address has changed. This change results from events such as a new
inbound call, an outbound call on the address, or a call changing its hold status.

LINEADDRESSSTATE_FORWARD

The forwarding status of the address changed, including the number of rings for determining a
no-answer condition. The application should check the address status to determine details about
the address's current forwarding status.

LINEADDRESSSTATE_TERMINALS

The terminal settings for the address changed.

LINEADDRESSSTATE_CAPSCHANGE

Indicates that due to configuration changes that the user made, or other circumstances, one or
more of the members in the LINEADDRESSCAPS structure for the address changed. The
application should use lineGetAddressCaps to read the updated structure. Applications that
support API versions earlier than 1.4 receive a LINEDEVSTATE_REINIT message that
requires them to shut down and reinitialize their connection to TAPI to obtain the updated
information.

dwParam3 is not used.
3-58
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Messages
LINE_APPNEWCALL

Description

The LINE_APPNEWCALL message informs an application when a new call handle was spontaneously
created on its behalf (other than through an API call from the application, in which case the handle would
have been returned through a pointer parameter that passed into the function).

Function Details

LINE_APPNEWCALL
dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) dwInstanceData;
dwParam1 = (DWORD) dwAddressID;
dwParam2 = (DWORD) hCall;
dwParam3 = (DWORD) dwPrivilege;

Parameters

dwDevice

The handle of the application to the line device on which the call was created.

dwCallbackInstance

The callback instance that is supplied when the line belonging to the call is opened.

dwParam1

Identifier of the address on the line on which the call appears.

dwParam2

The handle of the application to the new call.

dwParam3

The privilege of the application to the new call (LINECALLPRIVILEGE_OWNER or
LINECALLPRIVILEGE_MONITOR).

LINE_CALLINFO

Description

The TAPI LINE_CALLINFO message gets sent when the call information about the specified call has
changed. The application can invoke lineGetCallInfo to determine the current call information.

Function Details

LINE_CALLINFO
hDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) CallInfoState;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;
3-59
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Messages
Parameters

hDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the call's line is opened.

dwParam1

The call information item that changed. Can be one or more of the
LINECALLINFOSTATE_ constants.

dwParam2 is not used.

dwParam3 is not used.

LINE_CALLSTATE

Description

The LINE_CALLSTATE message gets sent when the status of the specified call changed. Typically,
several such messages are received during the lifetime of a call. Applications get notified of new
incoming calls with this message; the new call is in the offering state. The application can use the
lineGetCallStatus function to retrieve more detailed information about the current status of the call.

Function Details

LINE_CALLSTATE
dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) CallState;
dwParam2 = (DWORD) CallStateDetail;
dwParam3 = (DWORD) CallPrivilege;

Parameters

dwDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line belonging to this call is opened.

dwParam1

The new call state. Cisco Unified TSP supports only the following LINECALLSTATE_ values:

LINECALLSTATE_IDLE

The call is idle; no call actually exists.

LINECALLSTATE_OFFERING

The call is being offered to the station, signaling the arrival of a new call. In some environments,
a call in the offering state does not automatically alert the user. The switch instructing the line
to ring does alerts; it does not affect any call states.
3-60
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Messages
LINECALLSTATE_ACCEPTED

The call was offering and has been accepted. This indicates to other (monitoring) applications
that the current owner application has claimed responsibility for answering the call. In ISDN,
this also indicates that alerting to both parties has started.

LINECALLSTATE_CONFERENCED

The call is a member of a conference call and is logically in the connected state.

LINECALLSTATE_DIALTONE

The call is receiving a dial tone from the switch, which means that the switch is ready to receive
a dialed number.

LINECALLSTATE_DIALING

Destination address information (a phone number) is being sent to the switch over the call. The
lineGenerateDigits does not place the line into the dialing state.

LINECALLSTATE_RINGBACK

The call is receiving ringback from the called address. Ringback indicates that the other station
has been reached and is being alerted.

LINECALLSTATE_ONHOLDPENDCONF

The call is currently on hold while it is being added to a conference.

LINECALLSTATE_CONNECTED

The call has been established and the connection is made. Information can flow over the call
between the originating address and the destination address.

LINECALLSTATE_PROCEEDING

Dialing completed, and the call is proceeding through the switch or telephone network.

LINECALLSTATE_ONHOLD

The call is on hold by the switch.

LINECALLSTATE_ONHOLDPENDTRANSFER

The call is currently on hold awaiting transfer to another number.

LINECALLSTATE_DISCONNECTED

The remote party disconnected from the call.

LINECALLSTATE_UNKNOWN

The state of the call is not known. This state may be due to limitations of the call-progress
detection implementation.

Cisco Unified TSP supports two new call states that indicate more information about the call
state within the Cisco Unified CallManager setup. The standard TAPI call state is set to
LINECALLSTATE_UNKNOWN and the following call states will be ORed with the unknown
call state.

#define CLDSMT_CALL_PROGRESSING_STATE 0x0100000

The Progressing state indicates that the call is in progress over the network. The application has
to negotiate extension version 0x00050001 to receive this call state.

#define CLDSMT_CALL_WAITING_STATE 0x02000000

The waiting state indicates that the REFER request is in progress on Referrer's line and the
application should not request any other function on this call. All the requests will result in
LINEERR_INVALCALLSTATE. Application has to negotiate extension version 0x00070000
to receive this call state.
3-61
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Messages
dwParam2

Call-state-dependent information.

• If dwParam1 is LINECALLSTATE_CONNECTED, dwParam2 contains details about the
connected mode. This parameter uses the following LINECONNECTEDMODE_ constants:

– LINECONNECTEDMODE_ACTIVE

Call is connected at the current station (the current station acts as a participant in the call).

– LINECONNECTEDMODE_INACTIVE

Call is active at one or more other stations, but the current station is not a participant in the
call.

When a call is disconnected with cause code = DISCONNECTMODE_TEMPFAILURE and the
lineState = LINEDEVSTATE_INSERVICE, applications must take care of dropping the call.
If the application is terminating media for a device, then it is also the responsibility of the
application to stop the RTP streams for the same call. Cisco Unified TSP will not provide Stop
Transmission/Reception events to applications in this scenario. The behavior is exactly the
same with IP Phones. The User needs to hang up the disconnected - temp fail call on IPPhone
to stop the media. The application is also responsible for stopping the RTP streams in case the
line goes out of service (LINEDEVSTATE_OUTOFSERVICE) and the call on a line is reported
as IDLE.

Note If an application with negotiated extension version 0x00050001 or greater receives
device-specific CLDSMT_CALL_PROGRESSING_STATE = 0x01000000 with
LINECALLSTATE_UNKNOWN, then the cause code will be reported as the standard Q931
cause codes in dwParam2.

• If dwParam1 is LINECALLSTATE_DIALTONE, dwParam2 contains the details about the dial
tone mode. This parameter uses the following LINEDIALTONEMODE_ constant:

LINEDIALTONEMODE_UNAVAIL

The dial tone mode is unavailable and cannot become known.

• If dwParam1 is LINECALLSTATE_OFFERING, dwParam2 contains details about the
connected mode. This parameter uses the following LINEOFFERINGMODE_ constants:

LINEOFFERINGMODE_ACTIVE

The call alerts at the current station (accompanied by LINEDEVSTATE_RINGING
messages) and, if an application is set up to automatically answer, it answers. For TAPI
versions 1.4 and later, if the call state mode is ZERO, the application assumes that the value
is active (which is the situation on a non-bridged address).

Note The Cisco Unified TSP does not send LINEDEVSTATE_RINGING messages until the call
is accepted and moves to the LINECALLSTATE_ACCEPTED state. IP_phones auto-accept
calls. CTI ports and CTI route points do not auto-accept calls. Call the lineAccept() function
to accept the call at these types of devices.

• If dwParam1 is LINECALLSTATE_DISCONNECTED, dwParam2 contains details about the
disconnect mode. This parameter uses the following LINEDISCONNECTMODE_ constants:

LINEDISCONNECTMODE_NORMAL

This specifies a “normal” disconnect request by the remote party; call terminated normally.
3-62
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Messages
LINEDISCONNECTMODE_UNKNOWN

The reason for the disconnect request is unknown.

LINEDISCONNECTMODE_REJECT

The remote user rejected the call.

LINEDISCONNECTMODE_BUSY

The station that belongs to the remote user is busy.

LINEDISCONNECTMODE_NOANSWER

The station that belongs to the remote user does not answer.

LINEDISCONNECTMODE_CONGESTION

The network is congested.

LINEDISCONNECTMODE_UNAVAIL

The reason for the disconnect is unavailable and cannot become known later.

LINEDISCONNECTMODE_FACCMC

The call has been disconnected by the FAC/CMC feature.

Note LINEDISCONNECTMODE_FACCMC is only returned if the extension version negotiated on
the line is 0x00050000 (5.0) or higher. If the negotiated extension version is not at least
0x00050000, then the TSP will set the disconnect mode to
LINEDISCONNECTMODE_UNAVAIL.

dwParam3

If zero, this parameter indicates that there has not been a change in the privilege for the call to this
application.

If nonzero, this parameter specifies the privilege for the application to the call. This occurs in the
following situations: (1) The first time that the application receives a handle to this call; (2) When
the application is the target of a call hand-off (even if the application already was an owner of the
call). This parameter uses the following LINECALLPRIVILEGE_ constants:

LINECALLPRIVILEGE_MONITOR

The application has monitor privilege.

LINECALLPRIVILEGE_OWNER

The application has owner privilege.

LINE_CLOSE

Description

The LINE_CLOSE message gets sent when the specified line device has been forcibly closed. The line
device handle or any call handles for calls on the line are no longer valid after this message has been sent.
3-63
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Messages
Function Details

LINE_CLOSE
dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) 0;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the line device that was closed. This handle is no longer valid

dwCallbackInstance

The callback instance that is supplied when the line belonging to this call is opened.

dwParam1 is not used.

dwParam2 is not used.

dwParam3 is not used.

LINE_CREATE

Description

The LINE_CREATE message informs the application of the creation of a new line device.

Note CTI Manager cluster support, extension mobility, change notification, and user addition to the directory
can generate LINE_CREATE events.

Function Details

LINE_CREATE
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) idDevice;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

dwDevice is not used.

dwCallbackInstance is not used.

dwParam1

The dwDeviceID of the newly created device.

dwParam2 is not used.

dwParam3 is not used.
3-64
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Messages
LINE_DEVSPECIFIC

Description

The LINE_DEVSPECIFIC message notifies the application about device-specific events occurring on a
line, address or call. The meaning of the message and interpretation of the parameters are device
specific.

Function Details

LINE_DEVSPECIFIC
dwDevice = (DWORD) hLineOrCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) DeviceSpecific1;
dwParam2 = (DWORD) DeviceSpecific2;
dwParam3 = (DWORD) DeviceSpecific3;

Parameters

dwDevice

A handle to either a line device or call. This is device specific.

dwCallbackInstance

The callback instance that is supplied when the line is opened.

dwParam1 is device specific

dwParam2 is device specific

dwParam3 is device specific

LINE_GENERATE

Description

The TAPI LINE_GENERATE message notifies the application that the current digit or tone generation
terminated. Only one such generation request can be in progress an a given call at any time. This message
also gets sent when digit or tone generation is canceled.

Function Details

LINE_GENERATE
hDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) GenerateTermination;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;
3-65
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Messages
Parameters

hDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line is opened.

dwParam1

The reason that digit or tone generation terminated. This parameter must be one and only one of the
LINEGENERATETERM_ constants.

dwParam2 is not used.

dwParam3

The "tick count" (number of milliseconds since Windows started) at which the digit or tone
generation completed. For API versions earlier than 2.0, this parameter does not get used.

LINE_LINEDEVSTATE

Description

The TAPI LINE_LINEDEVSTATE message gets sent when the state of a line device changes. The
application can invoke lineGetLineDevStatus to determine the new status of the line.

Function Details

LINE_LINEDEVSTATE
hDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) DeviceState;
dwParam2 = (DWORD) DeviceStateDetail1;
dwParam3 = (DWORD) DeviceStateDetail2;

Parameters

hDevice

A handle to the line device. This parameter is NULL when dwParam1 is
LINEDEVSTATE_REINIT.

dwCallbackInstance

The callback instance that is supplied when the line is opened. If the dwParam1 parameter is
LINEDEVSTATE_REINIT, the dwCallbackInstance parameter is not valid and is set to zero.

dwParam1

The line device status item that changed. The parameter can be one or more of the
LINEDEVSTATE_ constants.
3-66
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Messages
dwParam2

The interpretation of this parameter depends on the value of dwParam1. If dwParam1 is
LINEDEVSTATE_RINGING, dwParam2 contains the ring mode with which the switch instructs
the line to ring. Valid ring modes include numbers in the range one to dwNumRingModes, where
dwNumRingModes specifies a line device capability.

If dwParam1 is LINEDEVSTATE_REINIT, and the message was issued by TAPI as a result of
translation of a new API message into a REINIT message, dwParam2 contains the dwMsg parameter
of the original message (for example, LINE_CREATE or LINE_LINEDEVSTATE). If dwParam2
is zero, this indicates that the REINIT message is a "real" REINIT message that requires the
application to call lineShutdown at its earliest convenience.

dwParam3

The interpretation of this parameter depends on the value of dwParam1. If dwParam1 is
LINEDEVSTATE_RINGING, dwParam3 contains the ring count for this ring event. The ring count
starts at zero.

If dwParam1 is LINEDEVSTATE_REINIT, and TAPI issued the message as a result of translation
of a new API message into a REINIT message, dwParam3 contains the dwParam1 parameter of the
original message (for example, LINEDEVSTATE_TRANSLATECHANGE or some other
LINEDEVSTATE_ value, if dwParam2 is LINE_LINEDEVSTATE, or the new device identifier, if
dwParam2 is LINE_CREATE).

LINE_MONITORDIGITS

Description

The LINE_MONITORDIGITS message gets sent when a digit is detected. The lineMonitorDigits
function controls the sending of this message.

Function Details

LINE_MONITORDIGITS
dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) Digit;
dwParam2 = (DWORD) DigitMode;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line for this call is opened.

dwParam1

The low-order byte contains the last digit that is received in ASCII.
3-67
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Messages
dwParam2

The digit mode that was detected. This parameter must be one and only one of the following
LINEDIGITMODE_ constant:

– LINEDIGITMODE_DTMF - Detect digits as DTMF tones. Valid digits for DTMF includes ‘0’
through ‘9’, ‘*’, and ‘#’.

dwParam3

The “tick count” (number of milliseconds since Windows started) at which the specified digit was
detected. For API versions earlier than 2.0, this parameter does not get used.

LINE_MONITORTONE

Description

The LINE_MONITORTONE message gets sent when a tone is detected. The lineMonitorTones function
controls the sending of this message.

Note Cisco Unified TSP supports only silent detection through LINE_MONITORTONE.

Function Details
LINE_MONITORTONE
dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) dwAppSpecific;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) tick count;

Parameters

dwDevice

A handle to the call.

dwCallbackInstance

The callback instance supplied when opening the line for this call.

dwParam1

The application-specific dwAppSpecific member of the LINE_MONITORTONE structure for the
tone that was detected.

dwParam2 is not used.

dwParam3

The “tick count” (number of milliseconds since Windows started) at which the specified digit was
detected.
3-68
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Messages
LINE_REMOVE

Description

The LINE_REMOVE message informs an application of the removal (deletion from the system) of a line
device. Generally, this parameter does not get used for temporary removals, such as extraction of
PCMCIA devices, but only for permanent removals in which the device would no longer be reported by
the service provider, if TAPI were reinitialized.

Note CTI Manager cluster support, extension mobility, change notification, and user deletion from the
directory can generate LINE_REMOVE events.

Function Details
LINE_REMOVE
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) dwDeviceID;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

dwDevice is reserved. Set to zero.

dwCallbackInstance is reserved. Set to zero.

dwParam1

Identifier of the line device that was removed.

dwParam2 is reserved. Set to zero.

dwParam3 is reserved. Set to zero.

LINE_REPLY

Description

The LINE_REPLY message reports the results of function calls that completed asynchronously.

Function Details
LINE_REPLY
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idRequest;
dwParam2 = (DWORD) Status;
dwParam3 = (DWORD) 0;

Parameters

dwDevice is not used.
3-69
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Messages
dwCallbackInstance

Returns the callback instance for this application.

dwParam1

The request identifier for which this is the reply.

dwParam2

The success or error indication. The application should cast this parameter into a long integer:

– Zero indicates success.

– A negative number indicates an error.

dwParam3 is not used.

LINE_REQUEST

Description

The TAPI LINE_REQUEST message reports the arrival of a new request from another application.

Function Details

LINE_REQUEST
hDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) hRegistration;
dwParam1 = (DWORD) RequestMode;
dwParam2 = (DWORD) RequestModeDetail1;
dwParam3 = (DWORD) RequestModeDetail2;

Parameters

hDevice is not used.

dwCallbackInstance

The registration instance of the application that is specified on lineRegisterRequestRecipient.

dwParam1

The request mode of the newly pending request. This parameter uses the LINEREQUESTMODE_
constants.

dwParam2

If dwParam1 is set to LINEREQUESTMODE_DROP, dwParam2 contains the hWnd of the
application that requests the drop. Otherwise, dwParam2 does not get used.

dwParam3

If dwParam1 is set to LINEREQUESTMODE_DROP, the low-order word of dwParam3 contains
the wRequestID as specified by the application requesting the drop. Otherwise,

dwParam3 is not used.
3-70
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
TAPI Line Device Structures
Table 3-3 lists the TAPI line device structures that the Cisco Unified TSP supports. This section lists the
possible values for the structure members as set by the TSP, and provides a cross reference to the
functions that use them. If the value of a structure member is device, line, or call specific, the system
notes the value for each condition.

Table 3-3 TAPI Line Device Structures

TAPI Line Device Structures

LINEADDRESSCAPS

LINEADDRESSSTATUS

LINEAPPINFO

LINECALLINFO

LINECALLLIST

LINECALLPARAMS

LINECALLSTATUS

LINECARDENTRY

LINECOUNTRYENTRY

LINECOUNTRYLIST

LINEDEVCAPS

LINEDEVSTATUS

LINEEXTENSIONID

LINEFORWARD

LINEFORWARDLIST

LINEGENERATETONE

LINEINITIALIZEEXPARAMS

LINELOCATIONENTRY

LINEMESSAGE

LINEMONITORTONE

LINEPROVIDERENTRY

LINEPROVIDERLIST

LINEREQMAKECALL

LINETRANSLATECAPS

LINETRANSLATEOUTPUT
3-71
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINEADDRESSCAPS

Members Values

dwLineDeviceID For All Devices:
The device identifier of the line device with which this address
is associated.

dwAddressSize
dwAddressOffset

For All Devices:
The size, in bytes, of the variably sized address field and the
offset, in bytes, from the beginning of this data structure

dwDevSpecificSize
dwDevSpecificOffset

For All Devices:
0

dwAddressSharing For All Devices:
0

dwAddressStates For All Devices (except Park DNs):
LINEADDRESSSTATE_FORWARD

For Park DNs:
0

dwCallInfoStates For All Devices (except Park DNs):
LINECALLINFOSTATE_CALLEDID
LINECALLINFOSTATE_CALLERID
LINECALLINFOSTATE_CALLID
LINECALLINFOSTATE_CONNECTEDID
LINECALLINFOSTATE_MEDIAMODE
LINECALLINFOSTATE_MONITORMODES
LINECALLINFOSTATE_NUMMONITORS
LINECALLINFOSTATE_NUMOWNERDECR
LINECALLINFOSTATE_NUMOWNERINCR
LINECALLINFOSTATE_ORIGIN
LINECALLINFOSTATE_REASON
LINECALLINFOSTATE_REDIRECTINGID
LINECALLINFOSTATE_REDIRECTIONID

For Park DNs:
LINECALLINFOSTATE_CALLEDID
LINECALLINFOSTATE_CALLERID
LINECALLINFOSTATE_CALLID
LINECALLINFOSTATE_CONNECTEDID
LINECALLINFOSTATE_NUMMONITORS
LINECALLINFOSTATE_NUMOWNERDECR
LINECALLINFOSTATE_NUMOWNERINCR
LINECALLINFOSTATE_ORIGIN
LINECALLINFOSTATE_REASON
LINECALLINFOSTATE_REDIRECTINGID
LINECALLINFOSTATE_REDIRECTIONID

dwCallerIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED
3-72
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwCalledIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN

dwConnectedIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwRedirectionIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwRedirectingIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN

dwCallStates For IP Phones and CTI Ports:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_ONHOLDPENDCONF
LINECALLSTATE_ONHOLDPENDTRANSFER
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

For CTI Route Points (without media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_UNKNOWN
For CTI Route Points (with media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_ONHOLD
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_UNKNOWN

Members Values
3-73
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwCallStates (continued) For Park DNs:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_UNKNOWN

dwDialToneModes For IP Phones and CTI Ports:
LINEDIALTONEMODE_UNAVAIL

For CTI Route Points and Park DNs:
0

dwBusyModes For All Devices:
0

dwSpecialInfo For All Devices:
0

dwDisconnectModes For All Devices:
LINEDISCONNECTMODE_BADDADDRESS
LINEDISCONNECTMODE_BUSY
LINEDISCONNECTMODE_CONGESTION
LINEDISCONNECTMODE_FORWARDED
LINEDISCONNECTMODE_NOANSWER
LINEDISCONNECTMODE_NORMAL
LINEDISCONNECTMODE_REJECT
LINEDISCONNECTMODE_TEMPFAILURE
LINEDISCONNECTMODE_UNREACHABLE
LINEDISCONNECTMODE_FACCMC (if negotiated
extension version is 0x00050000 or greater)

dwMaxNumActiveCalls For IP Phones, CTI Ports, and Park DNs:
1

For CTI Route Points (without media):
0

For CTI Route Points (with media):
Cisco Unified CallManager Administration configuration

dwMaxNumOnHoldCalls For IP Phones, CTI Ports:
200

For CTI Route Points:
0

For CTI Route Points (with media):
Cisco Unified CallManager Administration configuration
(same configuration as dwMaxNumActiveCalls)

For Park DNs:

1

Members Values
3-74
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwMaxNumOnHoldPendingCalls For IP Phones and CTI Ports:
1

For CTI Route Points and Park DNs:
0

dwMaxNumConference For IP Phones, CTI Ports, and Park DNs:
16

For CTI Route Points:
0

dwMaxNumTransConf For All Devices:
0

dwAddrCapFlags For IP Phones:
LINEADDRCAPFLAGS_CONFERENCEHELD
LINEADDRCAPFLAGS_DIALED
LINEADDRCAPFLAGS_FWDSTATUSVALID
LINEADDRCAPFLAGS_PARTIALDIAL
LINEADDRCAPFLAGS_TRANSFERHELD

For CTI Ports:
LINEADDRCAPFLAGS_CONFERENCEHELD
LINEADDRCAPFLAGS_DIALED
LINEADDRCAPFLAGS_ACCEPTTOALERT
LINEADDRCAPFLAGS_FWDSTATUSVALID
LINEADDRCAPFLAGS_PARTIALDIAL
LINEADDRCAPFLAGS_TRANSFERHELD

For CTI Route Points:
LINEADDRCAPFLAGS_ACCEPTTOALERT
LINEADDRCAPFLAGS_FWDSTATUSVALID
LINEADDRCAPFLAGS_ROUTEPOINT

For Park DNs:
LINEADDRCAPFLAGS_NOEXTERNALCALLS
LINEADDRCAPFLAGS_NOINTERNALCALLS

Members Values
3-75
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwCallFeatures For IP Phones (except VG248 and ATA186) and CTI Ports:
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ADDTOCONF
LINECALLFEATURE_ANSWER
LINECALLFEATURE_BLINDTRANSFER
LINECALLFEATURE_COMPLETETRANSF
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_PARK
LINECALLFEATURE_PREPAREADDTOCONF
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_SETUPCONF
LINECALLFEATURE_SETUPTRANSFER
LINECALLFEATURE_UNHOLD
LINECALLFEATURE_UNPARK

For VG248 and ATA186 Devices:
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ADDTOCONF
LINECALLFEATURE_BLINDTRANSFER
LINECALLFEATURE_COMPLETETRANSF
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_PARK
LINECALLFEATURE_PREPAREADDTOCONF
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_SETUPCONF
LINECALLFEATURE_SETUPTRANSFER
LINECALLFEATURE_UNHOLD
LINECALLFEATURE_UNPARK

Members Values
3-76
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwCallFeatures (continued) For CTI Route Points (without media):
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_DROP
LINECALLFEATURE_REDIRECT

For CTI Route Points (with media):
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ANSWER
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_UNHOLD

For Park DNs:
0

dwRemoveFromConfCaps For All Devices:
0

dwRemoveFromConfState For All Devices:
0

dwTransferModes For IP Phones and CTI Ports:
LINETRANSFERMODE_TRANSFER
LINETRANSFERMODE_CONFERENCE

For CTI Route Points and Park DNs:
0

dwParkModes For IP Phones and CTI Ports:
LINEPARKMODE_NONDIRECTED

For CTI Route Points and Park DNs:
0

dwForwardModes For All Devices (except ParkDNs):
LINEFORWARDMODE_UNCOND

For Park DNs:
0

dwMaxForwardEntries For All Devices (except ParkDNs):
1

For Park DNs:
0

dwMaxSpecificEntries For All Devices:
0

dwMinFwdNumRings For All Devices:
0

Members Values
3-77
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwMaxFwdNumRings For All Devices:
0

dwMaxCallCompletions For All Devices:
0

dwCallCompletionConds For All Devices:
0

dwCallCompletionModes For All Devices:
0

dwNumCompletionMessages For All Devices:
0

dwCompletionMsgTextEntrySize For All Devices:
0

dwCompletionMsgTextSize
dwCompletionMsgTextOffset

For All Devices:
0

dwAddressFeatures For IP Phones and CTI Ports:
LINEADDRFEATURE_FORWARD
LINEADDRFEATURE_FORWARDFWD
LINEADDRFEATURE_MAKECALL

For CTI Route Points:
LINEADDRFEATURE_FORWARD
LINEADDRFEATURE_FORWARDFWD

For Park DNs:
0

dwPredictiveAutoTransferStates For All Devices:
0

dwNumCallTreatments For All Devices:
0

dwCallTreatmentListSize
dwCallTreatmentListOffset

For All Devices:
0

dwDeviceClassesSize
dwDeviceClassesOffset

For All Devices (except Park DNs):
"tapi/line"
"tapi/phone"
"wave/in"
"wave/out"

For Park DNs:
"tapi/line"

dwMaxCallDataSize For All Devices:
0

dwCallFeatures2 For IP Phones and CTI Ports:
LINECALLFEATURE2_TRANSFERNORM
LINECALLFEATURE2_TRANSFERCONF

For CTI Route Points and Park DNs:
0

Members Values
3-78
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINEADDRESSSTATUS

dwMaxNoAnswerTimeout For IP Phones and CTI Ports:
4294967295 (0xFFFFFFFF)

For CTI Route Points and Park DNs:
0

dwConnectedModes For IP Phones, CTI Ports
LINECONNECTEDMODE_ACTIVE
LINECONNECTEDMODE_INACTIVE

For Park DNs:
LINECONNECTEDMODE_ACTIVE

For CTI Route Points (without media):
0

For CTI Route Points (with media)
LINECONNECTEDMODE_ACTIVE

dwOfferingModes For All Devices:
LINEOFFERINGMODE_ACTIVE

dwAvailableMediaModes For All Devices:
0

Members Values

dwNumInUse For All Devices:
1

dwNumActiveCalls For All Devices:
The number of calls on the address that are in call states other
than idle, onhold, onholdpendingtransfer, and
onholdpendingconference.

dwNumOnHoldCalls For All Devices:
The number of calls on the address in the onhold state.

dwNumOnHoldPendCalls For All Devices:
The number of calls on the address in the
onholdpendingtransfer or the onholdpendingconference state.

dwAddressFeatures For IP Phones and CTI Ports:
LINEADDRFEATURE_FORWARD
LINEADDRFEATURE_FORWARDFWD
LINEADDRFEATURE_MAKECALL

For CTI Route Points:
LINEADDRFEATURE_FORWARD
LINEADDRFEATURE_FORWARDFWD

For Park DNs:
0

dwNumRingsNoAnswer For All Devices:
0

Members Values
3-79
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINEAPPINFO

Description

The LINEAPPINFO structure contains information about the application that is currently running. The
LINEDEVSTATUS structure can contain an array of LINEAPPINFO structures.

Structure Details

typedef struct lineappinfo_tag {
 DWORD dwMachineNameSize;
 DWORD dwMachineNameOffset;
 DWORD dwUserNameSize;
 DWORD dwUserNameOffset;
 DWORD dwModuleFilenameSize;
 DWORD dwModuleFilenameOffset;
 DWORD dwFriendlyNameSize;
 DWORD dwFriendlyNameOffset;
 DWORD dwMediaModes;
 DWORD dwAddressID;
} LINEAPPINFO, *LPLINEAPPINFO;

dwForwardNumEntries For All Devices (except Park DNs):
The number of entries in the array referred to by
dwForwardSize and dwForwardOffset.

For Park DNs:
0

dwForwardSize
dwForwardOffset

For All Devices (except Park DNs):
The size, in bytes, and the offset, in bytes, from the beginning
of this data structure of the variably sized field that describes
the address's forwarding information. This information appears
as an array of dwForwardNumEntries elements, of type
LINEFORWARD. The offsets of the addresses in the array are
relative to the beginning of the LINEADDRESSSTATUS
structure. The offsets dwCallerAddressOffset and
dwDestAddressOffset in the variably sized field of type
LINEFORWARD pointed to by dwForwardSize and
dwForwardOffset are relative to the beginning of the
LINEADDRESSSTATUS data structure (the "root" container).

For Park DNs:
0

dwTerminalModesSize
dwTerminalModesOffset

For All Devices:
0

dwDevSpecificSize
dwDevSpecificOffset

For All Devices:
0

Members Values
3-80
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINECALLINFO

Members Values

dwMachineNameSize
dwMachineNameOffset

Size (bytes) and offset from beginning of LINEDEVSTATUS of
a string that specifies the name of the computer on which the
application is executing.

dwUserNameSize
dwUserNameOffset

Size (bytes) and offset from beginning of LINEDEVSTATUS of
a string that specifies the user name under whose account the
application is running.

dwModuleFilenameSize
dwModuleFilenameOffset

Size (bytes) and offset from beginning of LINEDEVSTATUS of
a string that specifies the module filename of the application.
You can use this string in a call to lineHandoff to perform a
directed handoff to the application.

dwFriendlyNameSize
dwFriendlyNameOffset

Size (bytes) and offset from beginning of LINEDEVSTATUS of
the string that the application provides to lineInitialize or
lineInitializeEx, which should be used in any display of
applications to the user.

dwMediaModes The media types for which the application has requested
ownership of new calls; zero if the line dwPrivileges did not
include LINECALLPRIVILEGE_OWNER when it opened.

dwAddressID If the line handle that was opened by using
LINEOPENOPTION_SINGLEADDRESS contains the address
identifier specified, set to 0xFFFFFFFF if the single address
option was not used.

An address identifier permanently associates with an address;
the identifier remains constant across operating system
upgrades.

Members Values

hLine For All Devices:
The handle for the line device with which this call is associated.

dwLineDeviceID For All Devices:
The device identifier of the line device with which this call is
associated.

dwAddressID For All Devices:
0

dwBearerMode For All Devices:
LINEBEARERMODE_SPEECH
LINEBEARERMODE_VOICE

dwRate For All Devices:
0

3-81
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwMediaMode For IP Phones and Park DNs:
LINEMEDIAMODE_INTERACTIVEVOICE

For CTI Ports and CTI Route Points:
LINEMEDIAMODE_AUTOMATEDVOICE
LINEMEDIAMODE_INTERACTIVEVOICE

dwAppSpecific For All Devices:
Not interpreted by the API implementation and service
provider. Any owner application of this call can set it with the
lineSetAppSpecific function.

dwCallID For All Devices:
In some telephony environments, the switch or service provider
can assign a unique identifier to each call. This allows the call
to be tracked across transfers, forwards, or other events. The
domain of these call IDs and their scope is service
provider-defined. The dwCallID member makes this unique
identifier available to the applications. The Cisco Unified TSP
uses dwCallID to store the "GlobalCallID" of the call. The
"GlobalCallID" represents a unique identifier that allows
applications to identify all of the call handles that are related to
a call.

dwRelatedCallID For All Devices:
0

dwCallParamFlags For All Devices:
0

dwCallStates For IP Phones and CTI Ports:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_ONHOLDPENDCONF
LINECALLSTATE_ONHOLDPENDTRANSFER
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

Members Values
3-82
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwCallStates (continued) For CTI Route Points (without media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_UNKNOWN

For CTI Route Points (with media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_BUSY
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

For Park DNs:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_UNKNOWN

dwMonitorDigitModes For IP Phones, CTI Ports, and CTI Route Points (with media):
LINEDIGITMODE_DTMF

For CTI Route Points and Park DNs:
0

dwMonitorMediaModes For IP Phones and Park DNs:
LINEMEDIAMODE_INTERACTIVEVOICE

For CTI Ports and CTI Route Points:
LINEMEDIAMODE_AUTOMATEDVOICE
LINEMEDIAMODE_INTERACTIVEVOICE

DialParams For All Devices:
0

dwOrigin For All Devices:
LINECALLORIGIN_CONFERENCE
LINECALLORIGIN_EXTERNAL
LINECALLORIGIN_INTERNAL
LINECALLORIGIN_OUTBOUND
LINECALLORIGIN_UNAVAIL
LINECALLORIGIN_UNKNOWN

Members Values
3-83
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwReason For All Devices:
LINECALLREASON_DIRECT
LINECALLREASON_FWDBUSY
LINECALLREASON_FWDNOANSWER
LINECALLREASON_FWDUNCOND
LINECALLREASON_PARKED
LINECALLREASON_PICKUP
LINECALLREASON_REDIRECT
LINECALLREASON_REMINDER
LINECALLREASON_TRANSFER
LINECALLREASON_UNKNOWN
LINECALLREASON_UNPARK

dwCompletionID For All Devices:
0

dwNumOwners For All Devices:
The number of application modules with different call handles
with owner privilege for the call.

dwNumMonitors For All Devices:
The number of application modules with different call handles
with monitor privilege for the call.

dwCountryCode For All Devices:
0

dwTrunk For All Devices:
0xFFFFFFFF

dwCallerIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwCallerIDSize
dwCallerIDOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
caller party ID number information, and the offset, in bytes,
from the beginning of this data structure.

dwCallerIDNameSize
dwCallerIDNameOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
caller party ID name information, and the offset, in bytes, from
the beginning of this data structure.

dwCalledIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN

dwCalledIDSize
dwCalledIDOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
called-party ID number information, and the offset, in bytes,
from the beginning of this data structure.

Members Values
3-84
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwCalledIDNameSize
dwCalledIDNameOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
called-party ID name information, and the offset, in bytes, from
the beginning of this data structure.

dwConnectedIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwConnectedIDSize
dwConnectedIDOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
connected party identifier number information and the offset, in
bytes, from the beginning of this data structure.

dwConnectedIDNameSize
dwConnectedIDNameOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
connected party identifier name information and the offset, in
bytes, from the beginning of this data structure.

dwRedirectionIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwRedirectionIDSize
dwRedirectionIDOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
redirection party identifier number information and the offset,
in bytes, from the beginning of this data structure.

dwRedirectionIDNameSize
dwRedirectionIDNameOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
redirection party identifier name information and the offset, in
bytes, from the beginning of this data structure.

dwRedirectingIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN

dwRedirectingIDSize
dwRedirectingIDOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
redirecting party identifier number information and the offset,
in bytes, from the beginning of this data structure.

dwRedirectingIDNameSize
dwRedirectingIDNameOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
redirecting party identifier name information and the offset, in
bytes, from the beginning of this data structure.

Members Values
3-85
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwAppNameSize
dwAppNameOffset

For All Devices:
The size, in bytes, and the offset, in bytes, from the beginning
of this data structure of the variably sized field that holds the
user-friendly application name of the application that first
originated, accepted, or answered the call. This specifies the
name that an application can specify in lineInitializeEx. If the
application specifies no such name, the application's module
filename gets used instead.

dwDisplayableAddressSize
dwDisplayableAddressOffset

For All Devices:

0

dwCalledPartySize
dwCalledPartyOffset

For All Devices:

0

dwCommentSize
dwCommentOffset

For All Devices:

0

dwDisplaySize
dwDisplayOffset

For All Devices:

0

dwUserUserInfoSize
dwUserUserInfoOffset

For All Devices:

0

dwHighLevelCompSize
dwHighLevelCompOffset

For All Devices:

0

dwLowLevelCompSize
dwLowLevelCompOffset

For All Devices:

0

dwChargingInfoSize
dwChargingInfoOffset

For All Devices:

0

dwTerminalModesSize
dwTerminalModesOffset

For All Devices:

0

dwDevSpecificSize
dwDevSpecificOffset

For All Devices:

If dwExtVersion >= 0x00060000 (6.0), this field will point to
TSP_Unicode_Party_Names structure,

If dwExtVersion >= 0x00070000 (7.0), this field will also point
to a common structure which has a pointer to SRTP structure,
DSCPValueForAudioCalls value and Partition information.
The structure is defined in the “LINECALLINFO Device
Specific Extensions” section on page 4-4.

ExtendedCallInfo structure contains ExtendedCallReason
which represents the last feature-related reason that caused a
change in this call’s callinfo/callstatus. The ExtendedCallInfo
will also provide SIP URL information for all call parties.

dwCallTreatment For All Devices:

0

Members Values
3-86
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINECALLLIST

Description

The LINECALLLIST structure describes a list of call handles. The lineGetNewCalls and
lineGetConfRelatedCalls functions return a structure of this type.

Note You must not extend this structure.

Structure Details

typedef struct linecalllist_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwCallsNumEntries;
 DWORD dwCallsSize;
 DWORD dwCallsOffset;
} LINECALLLIST, FAR *LPLINECALLLIST;

dwCallDataSize
dwCallDataOffset

For All Devices:

0

dwSendingFlowspecSize
dwSendingFlowspecOffset

For All Devices:

0

dwReceivingFlowspecSize
dwReceivingFlowspecOffset

For All Devices:

0

Members Values

Members Values

dwTotalSize The total size, in bytes, that is allocated to this data structure.

dwNeededSize The size, in bytes, for this data structure that is needed to hold
all the returned information.

dwUsedSize The size, in bytes, of the portion of this data structure that
contains useful information.

dwCallsNumEntries The number of handles in the hCalls array.

dwCallsSize
dwCallsOffset

The size, in bytes, and the offset, in bytes, from the beginning
of this data structure of the variably sized field (which is an
array of HCALL-sized handles).
3-87
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINECALLPARAMS

Members Values

dwBearerMode not supported

dwMinRate
dwMaxRate

not supported

dwMediaMode not supported

dwCallParamFlags not supported

dwAddressMode not supported

dwAddressID not supported

DialParams not supported

dwOrigAddressSize
dwOrigAddressOffset

not supported

dwDisplayableAddressSize
dwDisplayableAddressOffset

not supported

dwCalledPartySize
dwCalledPartyOffset

not supported

dwCommentSize
dwCommentOffset

not supported

dwUserUserInfoSize
dwUserUserInfoOffset

not supported

dwHighLevelCompSize
dwHighLevelCompOffset

not supported

dwLowLevelCompSize
dwLowLevelCompOffset

not supported

dwDevSpecificSize
dwDevSpecificOffset

not supported

dwPredictiveAutoTransferStates not supported

dwTargetAddressSize
dwTargetAddressOffset

not supported

dwSendingFlowspecSize
dwSendingFlowspecOffset

not supported

dwReceivingFlowspecSize
dwReceivingFlowspecOffset

not supported

dwDeviceClassSize
dwDeviceClassOffset

not supported

dwDeviceConfigSize
dwDeviceConfigOffset

not supported

dwCallDataSize
dwCallDataOffset

not supported
3-88
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINECALLSTATUS

dwNoAnswerTimeout For All Devices:
The number of seconds, after the completion of dialing, that the
call should be allowed to wait in the PROCEEDING or
RINGBACK state, before the service provider automatically
abandons it with a LINECALLSTATE_DISCONNECTED and
LINEDISCONNECTMODE_NOANSWER. A value of 0
indicates that the application does not desire automatic call
abandonment.

dwCallingPartyIDSize
dwCallingPartyIDOffset

not supported

Members Values

dwCallState For IP Phones and CTI Ports:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_ONHOLDPENDCONF
LINECALLSTATE_ONHOLDPENDTRANSFER
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

For CTI Route Points (without media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_UNKNOWN

For CTI Route Points (with media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

Members Values
3-89
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwCallState (continued) For Park DNs:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_UNKNOWN

dwCallStateMode For IP Phones, CTI Ports:
LINECONNECTEDMODE_ACTIVE
LINECONNECTEDMODE_INACTIVE
LINEDIALTONEMODE_NORMAL
LINEDIALTONEMODE_UNAVAIL
LINEDISCONNECTMODE_BADADDRESS
LINEDISCONNECTMODE_BUSY
LINEDISCONNECTMODE_CONGESTION
LINEDISCONNECTMODE_FORWARDED
LINEDISCONNECTMODE_NOANSWER
LINEDISCONNECTMODE_NORMAL
LINEDISCONNECTMODE_REJECT
LINEDISCONNECTMODE_TEMPFAILURE
LINEDISCONNECTMODE_UNREACHABLE
LINEDISCONNECTMODE_FACCMC (if negotiated
extension version is 0x00050000 or greater)

For CTI Route Points:
LINEDISCONNECTMODE_BADADDRESS
LINEDISCONNECTMODE_BUSY
LINEDISCONNECTMODE_CONGESTION
LINEDISCONNECTMODE_FORWARDED
LINEDISCONNECTMODE_NOANSWER
LINEDISCONNECTMODE_NORMAL
LINEDISCONNECTMODE_REJECT
LINEDISCONNECTMODE_TEMPFAILURE
LINEDISCONNECTMODE_UNREACHABLE
LINEDISCONNECTMODE_FACCMC (if negotiated
extension version is 0x00050000 or greater)

For Park DNs:
LINECONNECTEDMODE_ACTIVE
LINEDISCONNECTMODE_BADADDRESS
LINEDISCONNECTMODE_BUSY
LINEDISCONNECTMODE_CONGESTION
LINEDISCONNECTMODE_FORWARDED
LINEDISCONNECTMODE_NOANSWER
LINEDISCONNECTMODE_NORMAL
LINEDISCONNECTMODE_REJECT
LINEDISCONNECTMODE_TEMPFAILURE
LINEDISCONNECTMODE_UNREACHABLE

Members Values
3-90
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwCallPrivilege For All Devices
LINECALLPRIVILEGE_MONITOR
LINECALLPRIVILEGE_NONE
LINECALLPRIVILEGE_OWNER

dwCallFeatures For IP Phones (except VG248 and ATA186) and CTI Ports:
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ADDTOCONF
LINECALLFEATURE_ANSWER
LINECALLFEATURE_BLINDTRANSFER
LINECALLFEATURE_COMPLETETRANSF
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_PARK
LINECALLFEATURE_PREPAREADDTOCONF
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_SETUPCONF
LINECALLFEATURE_SETUPTRANSFER
LINECALLFEATURE_UNHOLD
LINECALLFEATURE_UNPARK

For VG248 and ATA186 Devices:
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ADDTOCONF
LINECALLFEATURE_BLINDTRANSFER
LINECALLFEATURE_COMPLETETRANSF
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_PARK
LINECALLFEATURE_PREPAREADDTOCONF
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_SETUPCONF
LINECALLFEATURE_SETUPTRANSFER
LINECALLFEATURE_UNHOLD
LINECALLFEATURE_UNPARK

Members Values
3-91
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINECARDENTRY

Description

The LINECARDENTRY structure describes a calling card. The LINETRANSLATECAPS structure can
contain an array of LINECARDENTRY structures.

Note You must not extend this structure.

dwCallFeatures (continued) For CTI Route Points (without media):
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_DROP
LINECALLFEATURE_REDIRECT

For CTI Route Points (with media):
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ANSWER
LINECALLFEATURE_BLINDTRANSFER
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_UNHOLD

dwCallFeatures (continued) For Park DNs:
0

dwDevSpecificSize
dwDevSpecificOffset

For All Devices:
0

dwCallFeatures2 For IP Phones and CTI Ports:
LINECALLFEATURE2_TRANSFERNORM
LINECALLFEATURE2_TRANSFERCONF

For CTI Route Points and Park DNs:
0

tStateEntryTime For All Devices:
The Coordinated Universal Time at which the current call state
was entered.

Members Values
3-92
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
Structure Details

typedef struct linecardentry_tag {
 DWORD dwPermanentCardID;
 DWORD dwCardNameSize;
 DWORD dwCardNameOffset;
 DWORD dwCardNumberDigits;
 DWORD dwSameAreaRuleSize;
 DWORD dwSameAreaRuleOffset;
 DWORD dwLongDistanceRuleSize;
 DWORD dwLongDistanceRuleOffset;
 DWORD dwInternationalRuleSize;
 DWORD dwInternationalRuleOffset;
 DWORD dwOptions;
} LINECARDENTRY, FAR *LPLINECARDENTRY;

Members

Members Values

dwPermanentCardID The permanent identifier that identifies the card.

dwCardNameSize
dwCardNameOffset

Contains a null-terminated string (size includes the NULL) that
describes the card in a user-friendly manner.

dwCardNumberDigits The number of digits in the existing card number. The card
number itself does not get returned for security reasons (TAPI
stores it in scrambled form). The application can use this
parameter to insert filler bytes into a text control in "password"
mode to show that a number exists.

dwSameAreaRuleSize
dwSameAreaRuleOffset

The offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure and the total number of
bytes in the dialing rule defined for calls to numbers in the same
area code. The rule specifies a null-terminated string.

dwLongDistanceRuleSize
dwLongDistanceRuleOffset

The offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure and the total number of
bytes in the dialing rule that is defined for calls to numbers in
the other areas in the same country or region. The rule specifies
a null-terminated string.

dwInternationalRuleSize
dwInternationalRuleOffset

The offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure and the total number of
bytes in the dialing rule that is defined for calls to numbers in
other countries/regions. The rule specifies a null-terminated
string.

dwOptions Indicates other settings that are associated with this calling
card, using the LINECARDOPTION_
3-93
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINECOUNTRYENTRY

Description

The LINECOUNTRYENTRY structure provides the information for a single country entry. An array of
one or more of these structures makes up part of the LINECOUNTRYLIST structure that the
lineGetCountry function returns.

Note You must not extend this structure.

Structure Details

typedef struct linecountryentry_tag {
 DWORD dwCountryID;
 DWORD dwCountryCode;
 DWORD dwNextCountryID;
 DWORD dwCountryNameSize;
 DWORD dwCountryNameOffset;
 DWORD dwSameAreaRuleSize;
 DWORD dwSameAreaRuleOffset;
 DWORD dwLongDistanceRuleSize;
 DWORD dwLongDistanceRuleOffset;
 DWORD dwInternationalRuleSize;
 DWORD dwInternationalRuleOffset;
} LINECOUNTRYENTRY, FAR *LPLINECOUNTRYENTRY;

Members Values

dwCountryID The country or region identifier of the entry which specifies an
internal identifier that allows multiple entries to exist in the
country or region list with the same country code (for example,
all countries in North America and the Caribbean share country
code 1, but require separate entries in the list).

dwCountryCode The actual country code of the country or region that the entry
represents (that is, the digits that would be dialed in an
international call). Only this value should be displayed to users
(Country IDs should never display, as they could be confusing).

dwNextCountryID The country identifier of the next entry in the country or region
list. Because country codes and identifiers are not assigned in
numeric sequence, the country or region list represents a single
linked list, with each entry pointing to the next. The last country
or region in the list has a dwNextCountryID value of zero.
When the LINECOUNTRYLIST structure is used to obtain the
entire list, the entries in the list appear in sequence as linked by
their dwNextCountryID members.

dwCountryNameSize
dwCountryNameOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINECOUNTRYLIST structure of a null-terminated
string that gives the name of the country or region.
3-94
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINECOUNTRYLIST

Description

The LINECOUNTRYLIST structure describes a list of countries/regions. This structure can contain an
array of LINECOUNTRYENTRY structures. The lineGetCountry function returns
LINECOUNTRYLIST.

Note You must not extend this structure.

Structure Details

typedef struct linecountrylist_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwNumCountries;
 DWORD dwCountryListSize;
 DWORD dwCountryListOffset;
} LINECOUNTRYLIST, FAR *LPLINECOUNTRYLIST;

dwSameAreaRuleSize
dwSameAreaRuleOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINECOUNTRYLIST structure of a null-terminated
string that contains the dialing rule for direct-dialed calls to the
same area code.

dwLongDistanceRuleSize
dwLongDistanceRuleOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINECOUNTRYLIST structure of a null-terminated
string that contains the dialing rule for direct-dialed calls to
other areas in the same country or region.

dwInternationalRuleSize
dwInternationalRuleOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINECOUNTRYLIST structure of a null-terminated
string that contains the dialing rule for direct-dialed calls to
other countries/regions.

Members Values

Members Values

dwTotalSize The total size, in bytes, that are allocated to this data structure.

dwNeededSize The size, in bytes, for this data structure that is needed to hold
all the returned information.

dwUsedSize The size, in bytes, of the portion of this data structure that
contains useful information.

dwNumCountries The number of LINECOUNTRYENTRY structures that are
present in the array dwCountryListSize and
dwCountryListOffset dominate.

dwCountryListSize
dwCountryListOffset

The size, in bytes, and the offset, in bytes, from the beginning
of this data structure of an array of LINECOUNTRYENTRY
elements that provide information on each country or region.
3-95
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINEDEVCAPS

Members Values

dwProviderInfoSize
dwProviderInfoOffset

For All Devices:
The size, in bytes, of the variably sized field that contains
service provider information and the offset, in bytes, from the
beginning of this data structure. The dwProviderInfoSize/
Offset member provides information about the provider
hardware and/or software. This information can prove useful
when a user needs to call customer service with problems
regarding the provider. The Cisco Unified TSP sets this field
to "Cisco Unified TSPxxx.TSP: Cisco IP PBX Service
Provider Ver. x.x(x.x)" where the text before the colon
specifies the file name of the TSP and the text after "Ver."
specifies the version of TSP.

dwSwitchInfoSize
dwSwitchInfoOffset

For All Devices:
The size, in bytes, of the variably sized device field that
contains switch information and the offset, in bytes, from the
beginning of this data structure. The dwSwitchInfoSize/Offset
member provides information about the switch to which the line
device connects, such as the switch manufacturer, the model
name, the software version, and so on. This information can
prove useful when a user needs to call customer service with
problems regarding the switch. The Cisco Unified TSP sets
this field to "Cisco Unified CallManager Ver. x.x(x.x), Cisco
CTI Manager Ver x.x(x.x)" where the text after "Ver." specifies
the version of the Cisco Unified CallManager and the version
of the CTI Manager, respectively.

dwPermanentLineID For All Devices:
The permanent DWORD identifier by which the line device is
known in the system's configuration. This identifier specifies a
permanent name for the line device. This permanent name (as
opposed to dwDeviceID) does not change as lines are added or
removed from the system and persists through operating system
upgrades. You can therefore use it to link line-specific
information in .ini files (or other files) in a way that is not
affected by adding or removing other lines or by changing the
operating system.

dwLineNameSize
dwLineNameOffset

For All Devices:
The size, in bytes, of the variably sized device field that
contains a user-configurable name for this line device, and the
offset, in bytes, from the beginning of this data structure. You
can configure this name when configuring the line device
service provider, and the name gets provided for the user's
convenience. The Cisco Unified TSP sets this field to “Cisco
Line: [deviceName] (dirn)” where deviceName specifies the
name of the device on which the line resides, and dirn specifies
the directory number for the device.

dwStringFormat For All Devices:
STRINGFORMAT_ASCII
3-96
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwAddressModes For All Devices:
LINEADDRESSMODE_ADDRESSID

dwNumAddresses For All Devices:
1

dwBearerModes For All Devices:
LINEBEARERMODE_SPEECH
LINEBEARERMODE_VOICE

dwMaxRate For All Devices:
0

dwMediaModes For IP Phones and Park DNs:
LINEMEDIAMODE_INTERACTIVEVOICE

For CTI Ports and CTI Route Points:
LINEMEDIAMODE_AUTOMATEDVOICE
LINEMEDIAMODE_INTERACTIVEVOICE

dwGenerateToneModes For IP Phones, CTI Ports, and CTI Route Points (with media):
LINETONEMODE_BEEP

For CTI Route Points (without media) and Park DNs:
0

dwGenerateToneMaxNumFreq For All Devices:
0

dwGenerateDigitModes For IP Phones, CTI Ports, and CTI Route Points (with media):
LINETONEMODE_DTMF

For CTI Route Points and Park DNs:
0

dwMonitorToneMaxNumFreq For All Devices:
0

dwMonitorToneMaxNumEntries For All Devices:
0

dwMonitorDigitModes For IP Phones, CTI Ports, and CTI Route Points (with media):
LINETONEMODE_DTMF

For CTI Route Points (without media) and Park DNs:
0

dwGatherDigitsMinTimeout
dwGatherDigitsMaxTimeout

For All Devices:
0

dwMedCtlDigitMaxListSize
dwMedCtlMediaMaxListSize
dwMedCtlToneMaxListSize
dwMedCtlCallStateMaxListSize

For All Devices:
0

dwDevCapFlags For IP Phones:
0

For All Other Devices:
LINEDEVCAPFLAGS_CLOSEDROP

Members Values
3-97
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwMaxNumActiveCalls For All Devices:
1

For CTI Route Points (without media):
0

For CTI Route Points (with media):
Cisco Unified CallManager Administration configuration

dwAnswerMode For IP Phones (except for VG248 and ATA186), CTI Route
Points (with media) and CTI Ports:
LINEANSWERMODE_HOLD

For VG248 devices, ATA186 devices, CTI Route Points
(without media), and Park DNs:
0

dwRingModes For All Devices:
1

dwLineStates For IP Phones, CTI Ports, and Route Points (with media):
LINEDEVSTATE_CLOSE
LINEDEVSTATE_DEVSPECIFIC
LINEDEVSTATE_INSERVICE
LINEDEVSTATE_MSGWAITOFF
LINEDEVSTATE_MSGWAITON
LINEDEVSTATE_NUMCALLS
LINEDEVSTATE_OPEN
LINEDEVSTATE_OUTOFSERVICE
LINEDEVSTATE_REINIT
LINEDEVSTATE_RINGING
LINEDEVSTATE_TRANSLATECHANGE

For CTI Route Points (without media):
LINEDEVSTATE_CLOSE
LINEDEVSTATE_INSERVICE
LINEDEVSTATE_OPEN
LINEDEVSTATE_OUTOFSERVICE
LINEDEVSTATE_REINIT
LINEDEVSTATE_RINGING
LINEDEVSTATE_TRANSLATECHANGE

For Park DNs:
LINEDEVSTATE_CLOSE
LINEDEVSTATE_DEVSPECIFIC
LINEDEVSTATE_INSERVICE
LINEDEVSTATE_NUMCALLS
LINEDEVSTATE_OPEN
LINEDEVSTATE_OUTOFSERVICE
LINEDEVSTATE_REINIT
LINEDEVSTATE_TRANSLATECHANGE

dwUUIAcceptSize For All Devices:
0

dwUUIAnswerSize For All Devices:
0

Members Values
3-98
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwUUIMakeCallSize For All Devices:
0

dwUUIDropSize For All Devices:
0

dwUUISendUserUserInfoSize For All Devices:
0

dwUUICallInfoSize For All Devices:
0

MinDialParams
MaxDialParams

For All Devices:
0

DefaultDialParams For All Devices:
0

dwNumTerminals For All Devices:
0

dwTerminalCapsSize
dwTerminalCapsOffset

For All Devices:
0

dwTerminalTextEntrySize For All Devices:
0

dwTerminalTextSize
dwTerminalTextOffset

For All Devices:
0

dwDevSpecificSize
dwDevSpecificOffset

For All Devices (except ParkDNs):
If dwExtVersion > 0x00030000 (3.0):
LINEDEVCAPS_DEV_SPECIFIC.m_
DevSpecificFlags = 0

For Park DNs:
If dwExtVersion > 0x00030000 (3.0):
LINEDEVCAPS_DEV_SPECIFIC.m_
DevSpecificFlags =
LINEDEVCAPSDEVSPECIFIC_PARKDN

dwLineFeatures For IP Phones, CTI Ports, and CTI Route Points (with media):
LINEFEATURE_DEVSPECIFIC
LINEFEATURE_FORWARD
LINEFEATURE_FORWARDFWD
LINEFEATURE_MAKECALL

For CTI Route Points (without media):
LINEFEATURE_FORWARD
LINEFEATURE_FORWARDFWD

For Park DNs:
0

dwSettableDevStatus For All Devices:
0

Members Values
3-99
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINEDEVSTATUS

dwDeviceClassesSize
dwDeviceClassesOffset

For IP Phones and CTI Route Points:
"tapi/line"
"tapi/phone"

For CTI Ports:
"tapi/line"
"tapi/phone"
"wave/in"
"wave/out"

For Park DNs:
"tapi/line"

PermanentLineGuid The GUID that is permanently associated with the line device.

Members Values

dwNumOpens For All Devices:
The number of active opens on the line device.

dwOpenMediaModes For All Devices:
Bit array that indicates for which media types the line device is
currently open.

dwNumActiveCalls For All Devices:
The number of calls on the line in call states other than idle,
onhold, onholdpendingtransfer, and onholdpendingconference.

dwNumOnHoldCalls For All Devices:
The number of calls on the line in the onhold state.

dwNumOnHoldPendCalls For All Devices:
The number of calls on the line in the onholdpendingtransfer or
onholdpendingconference state.

dwLineFeatures For IP Phones, CTI Ports, and CTI Route Points (with media):
LINEFEATURE_DEVSPECIFIC
LINEFEATURE_FORWARD
LINEFEATURE_FORWARDFWD
LINEFEATURE_MAKECALL

For CTI Route Points (without media):
LINEFEATURE_FORWARD
LINEFEATURE_FORWARDFWD

For Park DNs:
0

dwNumCallCompletions For All Devices:
0

dwRingMode For All Devices:
0

dwSignalLevel For All Devices:
0

Members Values
3-100
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINEEXTENSIONID

LINEFORWARD

Description

The LINEFORWARD structure describes an entry of the forwarding instructions.

dwBatteryLevel For All Devices:
0

dwRoamMode For All Devices:
0

dwDevStatusFlags For IP Phones and CTI Ports:
LINEDEVSTATUSGLAGS_CONNECTED
LINEDEVSTATUSGLAGS_INSERVICE
LINEDEVSTATUSGLAGS_MSGWAIT

For CTI Route Points and Park DNs:
LINEDEVSTATUSGLAGS_CONNECTED
LINEDEVSTATUSGLAGS_INSERVICE

dwTerminalModesSize
dwTerminalModesOffset

For All Devices:
0

dwDevSpecificSize
dwDevSpecificOffset

For All Devices:
0

dwAvailableMediaModes For All Devices:
0

dwAppInfoSize
dwAppInfoOffset

For All Devices:
Length, in bytes, and offset from the beginning of
LINEDEVSTATUS of an array of LINEAPPINFO structures.
The dwNumOpens member indicates the number of elements in
the array. Each element in the array identifies an application
that has the line open.

Members Values

dwExtensionID0 For All Devices:
0x8EBD6A50

dwExtensionID1 For All Devices:
0x128011D2

dwExtensionID2 For All Devices:
0x905B0060

dwExtensionID3 For All Devices:
0xB03DD275

Members Values
3-101
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
Structure Details

typedef struct lineforward_tag {
 DWORD dwForwardMode;
 DWORD dwCallerAddressSize;
 DWORD dwCallerAddressOffset;
 DWORD dwDestCountryCode;
 DWORD dwDestAddressSize;
 DWORD dwDestAddressOffset;
} LINEFORWARD, FAR *LPLINEFORWARD;

Members Values

dwForwardMode The types of forwarding. The dwForwardMode member can
have only a single bit set. This member uses the following
LINEFORWARDMODE_ constants:

LINEFORWARDMODE_UNCOND

Forward all calls unconditionally, irrespective of their
origin. Use this value when unconditional forwarding for
internal and external calls cannot be controlled separately.
Unconditional forwarding overrides forwarding on busy
and/or no-answer conditions.

Note LINEFORWARDMODE_UNCOND is the only
forward mode that Cisco Unified TSP supports.

LINEFORWARDMODE_UNCONDINTERNAL

Forward all internal calls unconditionally. Use this value
when unconditional forwarding for internal and external
calls can be controlled separately.

LINEFORWARDMODE_UNCONDEXTERNAL

Forward all external calls unconditionally. Use this value
when unconditional forwarding for internal and external
calls can be controlled separately.

LINEFORWARDMODE_UNCONDSPECIFIC

Unconditionally forward all calls that originated at a
specified address (selective call forwarding).

LINEFORWARDMODE_BUSY

Forward all calls on busy, irrespective of their origin. Use
this value when forwarding for internal and external calls
both on busy and on no answer cannot be controlled
separately.

LINEFORWARDMODE_BUSYINTERNAL

Forward all internal calls on busy. Use this value when
forwarding for internal and external calls on busy and on
no answer can be controlled separately.

LINEFORWARDMODE_BUSYEXTERNAL

Forward all external calls on busy. Use this value when
forwarding for internal and external calls on busy and on
no answer can be controlled separately.
3-102
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwForwardMode (continued) LINEFORWARDMODE_BUSYSPECIFIC

Forward on busy all calls that originated at a specified
address (selective call forwarding).

LINEFORWARDMODE_NOANSW

Forward all calls on no answer, irrespective of their origin.
Use this value when call forwarding for internal and
external calls on no answer cannot be controlled separately.

LINEFORWARDMODE_NOANSWINTERNAL

Forward all internal calls on no answer. Use this value
when forwarding for internal and external calls on no
answer can be controlled separately.

LINEFORWARDMODE_NOANSWEXTERNAL

Forward all external calls on no answer. Use this value
when forwarding for internal and external calls on no
answer can be controlled separately.

LINEFORWARDMODE_NOANSWSPECIFIC

Forward all calls that originated at a specified address on
no answer (selective call forwarding).

LINEFORWARDMODE_BUSYNA

Forward all calls on busy or no answer, irrespective of their
origin. Use this value when forwarding for internal and
external calls on both busy and on no answer cannot be
controlled separately.

LINEFORWARDMODE_BUSYNAINTERNAL

Forward all internal calls on busy or no answer. Use this
value when call forwarding on busy and on no answer
cannot be controlled separately for internal calls.

LINEFORWARDMODE_BUSYNAEXTERNAL

Forward all external calls on busy or no answer. Use this
value when call forwarding on busy and on no answer
cannot be controlled separately for internal calls.

LINEFORWARDMODE_BUSYNASPECIFIC

Forward on busy or no answer all calls that originated at a
specified address (selective call forwarding).

LINEFORWARDMODE_UNKNOWN

Calls get forwarded, but the conditions under which
forwarding occurs are not known at this time.

LINEFORWARDMODE_UNAVAIL

Calls are forwarded, but the conditions under which
forwarding occurs are not known and are never known by
the service provider.

Members Values
3-103
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINEFORWARDLIST

Description

The LINEFORWARDLIST structure describes a list of forwarding instructions.

Structure Details

typedef struct lineforwardlist_tag {
 DWORD dwTotalSize;

DWORD dwNumEntries;
 LINEFORWARD ForwardList[1];
} LINEFORWARDLIST, FAR *LPLINEFORWARDLIST;

LINEGENERATETONE

Description

The LINEGENERATETONE structure contains information about a tone to be generated. The
lineGenerateTone and TSPI_lineGenerateTone functions use this structure.

Note You must not extend this structure.

dwCallerAddressSize
dwCallerAddressOffset

The size in bytes of the variably sized address field that
contains the address of a caller to be forwarded and the offset
in bytes from the beginning of the containing data structure.
The dwCallerAddressSize/Offset member gets set to zero if
dwForwardMode is not one of the following choices:
LINEFORWARDMODE_BUSYNASPECIFIC,
LINEFORWARDMODE_NOANSWSPECIFIC,
LINEFORWARDMODE_UNCONDSPECIFIC, or
LINEFORWARDMODE_BUSYSPECIFIC.

dwDestCountryCode The country code of the destination address to which the call is
to be forwarded.

dwDestAddressSize
dwDestAddressOffset

The size in bytes of the variably sized address field that
contains the address of the address where calls are to be
forwarded and the offset in bytes from the beginning of the
containing data structure.

Members Values

Members Values

dwTotalSize The total size in bytes of the data structure.

dwNumEntries Number of entries in the array specified as ForwardList[].

ForwardList[] An array of forwarding instruction. The array entries specify
type LINEFORWARD.
3-104
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
This structure gets used only for the generation of tones; it does not get used for tone monitoring.

Structure Details

typedef struct linegeneratetone_tag {
 DWORD dwFrequency;
 DWORD dwCadenceOn;
 DWORD dwCadenceOff;
 DWORD dwVolume;
} LINEGENERATETONE, FAR *LPLINEGENERATETONE;

LINEINITIALIZEEXPARAMS

Description

The LINEINITIZALIZEEXPARAMS structure describes parameters that are supplied when calls are
made using LINEINITIALIZEEX.

Structure Details

typedef struct lineinitializeexparams_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwOptions;

 union
 {
 HANDLE hEvent;
 HANDLE hCompletionPort;
 } Handles;

 DWORD dwCompletionKey;

} LINEINITIALIZEEXPARAMS, FAR *LPLINEINITIALIZEEXPARAMS;

Members Values

dwFrequency The frequency, in hertz, of this tone component. A service
provider may adjust (round up or down) the frequency that the
application specified to fit its resolution.

dwCadenceOn The “on” duration, in milliseconds, of the cadence of the
custom tone to be generated. Zero means no tone gets
generated.

dwCadenceOff The “off” duration, in milliseconds, of the cadence of the
custom tone to be generated. Zero means no off time, that is, a
constant tone.

dwVolume The volume level at which the tone gets generated. A value of
0x0000FFFF represents full volume, and a value of
0x00000000 means silence.
3-105
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
Further Details

See “lineInitializeEx” for further information on these options.

LINELOCATIONENTRY

Description

The LINELOCATIONENTRY structure describes a location that is used to provide an address
translation context. The LINETRANSLATECAPS structure can contain an array of
LINELOCATIONENTRY structures.

Note You must not extend this structure.

Structure Details

typedef struct linelocationentry_tag {
 DWORD dwPermanentLocationID;
 DWORD dwLocationNameSize;
 DWORD dwLocationNameOffset;
 DWORD dwCountryCode;
 DWORD dwCityCodeSize;

Members Values

dwTotalSize The total size, in bytes, that is allocated to this data structure.

dwNeededSize The size, in bytes, for this data structure that is needed to hold
all the returned information.

dwUsedSize The size, in bytes, of the portion of this data structure that
contains useful information.

dwOptions One of the LINEINITIALIZEEXOPTION_ constants.
Specifies the event notification mechanism that the application
wants to use.

hEvent If dwOptions specifies
LINEINITIALIZEEXOPTION_USEEVENT,
TAPI returns the event handle in this field.

hCompletionPort If dwOptions specifies
LINEINITIALIZEEXOPTION_USECOMPLETIONPORT,
the application must specify in this field the handle of an
existing completion port that was opened using
CreateIoCompletionPort.

dwCompletionKey If dwOptions specifies
LINEINITIALIZEEXOPTION_USECOMPLETIONPORT, the
application must specify in this field a value that is returned
through the lpCompletionKey parameter of
GetQueuedCompletionStatus to identify the completion
message as a telephony message.
3-106
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
 DWORD dwCityCodeOffset;
 DWORD dwPreferredCardID;
 DWORD dwLocalAccessCodeSize;
 DWORD dwLocalAccessCodeOffset;
 DWORD dwLongDistanceAccessCodeSize;
 DWORD dwLongDistanceAccessCodeOffset;
 DWORD dwTollPrefixListSize;
 DWORD dwTollPrefixListOffset;
 DWORD dwCountryID;
 DWORD dwOptions;
 DWORD dwCancelCallWaitingSize;
 DWORD dwCancelCallWaitingOffset;
} LINELOCATIONENTRY, FAR *LPLINELOCATIONENTRY;

Members Values

dwPermanentLocationID The permanent identifier that identifies the location.

dwLocationNameSize
dwLocationNameOffset

Contains a null-terminated string (size includes the NULL) that
describes the location in a user-friendly manner.

dwCountryCode The country code of the location.

dwPreferredCardID The preferred calling card when dialing from this location.

dwCityCodeSize
dwCityCodeOffset

Contains a null-terminated string that specifies the city or area
code that is associated with the location (the size includes the
NULL). Applications can use this information, along with the
country code, to “default" entry fields for the user when you
enter the phone numbers, to encourage the entry of proper
canonical numbers.

dwLocalAccessCodeSize
dwLocalAccessCodeOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINETRANSLATECAPS structure of a null-terminated
string that contains the access code to be dialed before calls to
addresses in the local calling area.

dwLongDistanceAccessCodeSize
dwLongDistanceAccessCodeOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINETRANSLATECAPS structure of a null-terminated
string that contains the access code to be dialed before calls to
addresses outside the local calling area.

dwTollPrefixListSize
dwTollPrefixListOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINETRANSLATECAPS structure of a null-terminated
string that contains the toll prefix list for the location. The
string contains only prefixes that consist of the digits "0"
through "9" and are separated from each other by a single ","
(comma) character.

dwCountryID The country identifier of the country or region that is selected
for the location. Use this identifier with the lineGetCountry
function to obtain additional information about the specific
country or region, such as the country or region name (the
dwCountryCode member cannot be used for this purpose
because country codes are not unique).

dwOptions Indicates options in effect for this location with values taken
from the LINELOCATIONOPTION_ Constants.
3-107
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINEMESSAGE

Description

The LINEMESSAGE structure contains parameter values that specify a change in status of the line that
the application currently has open. The lineGetMessage function returns the LINEMESSAGE structure.

Structure Details

typedef struct linemessage_tag {
 DWORD hDevice;
 DWORD dwMessageID;
 DWORD_PTR dwCallbackInstance;
 DWORD_PTR dwParam1;
 DWORD_PTR dwParam2;
 DWORD_PTR dwParam3;
} LINEMESSAGE, FAR *LPLINEMESSAGE;

Further Details

For details about the parameter values that are passed in this structure, see “TAPI Line Messages.”

dwCancelCallWaitingSize
dwCancelCallWaitingOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINETRANSLATECAPS structure of a null-terminated
string that contains the dial digits and modifier characters that
should be prefixed to the dialable string (after the pulse/tone
character) when an application sets the
LINETRANSLATEOPTION_CANCELCALLWAITING bit in
the dwTranslateOptions parameter of lineTranslateAddress. If
no prefix is defined, dwCancelCallWaitingSize being set to
zero may indicate this, or it being set to 1 and
dwCancelCallWaitingOffset pointing to an empty string (single
NULL byte) may indicate this.

Members Values

Members Values

hDevice A handle to either a line device or a call. The context that is
provided by dwMessageID can determine the nature of this
handle (line handle or call handle).

dwMessageID A line or call device message.

dwCallbackInstance Instance data passed back to the application, which the
application in the dwCallBackInstance parameter of
lineInitializeEx specified. TAPI does not interpret this
DWORD.

dwParam1 A parameter for the message.

dwParam2 A parameter for the message.

dwParam3 A parameter for the message.
3-108
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINEMONITORTONE

Description

The LINEMONITORTONE structure defines a tone for the purpose of detection. Use this as an entry in
an array. An array of tones gets passed to the lineMonitorTones function that monitors these tones and
sends a LINE_MONITORTONE message to the application when a detection is made.

A tone with all frequencies set to zero corresponds to silence. An application can thus monitor the call
information stream for silence.

Note You must not extend this structure.

Structure Details

typedef struct linemonitortone_tag {
 DWORD dwAppSpecific;
 DWORD dwDuration;
 DWORD dwFrequency1;
 DWORD dwFrequency2;
 DWORD dwFrequency3;
} LINEMONITORTONE, FAR *LPLINEMONITORTONE;

LINEPROVIDERENTRY

Description

The LINEPROVIDERENTRY structure provides the information for a single service provider entry. An
array of these structures gets returned as part of the LINEPROVIDERLIST structure that the function
lineGetProviderList returns.

Note You cannot extend this structure.

Members Values

dwAppSpecific Used by the application for tagging the tone. When this tone is
detected, the value of the dwAppSpecific member gets passed
back to the application.

dwDuration The duration, in milliseconds, during which the tone should be
present before a detection is made.

dwFrequency1 dwFrequency2

dwFrequency3 The frequency, in hertz, of a component of the tone. If fewer
than three frequencies are needed in the tone, a value of 0
should be used for the unused frequencies. A tone with all three
frequencies set to zero gets interpreted as silence and can be
used for silence detection.
3-109
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
Structure Details

typedef struct lineproviderentry_tag {
 DWORD dwPermanentProviderID;
 DWORD dwProviderFilenameSize;
 DWORD dwProviderFilenameOffset;
} LINEPROVIDERENTRY, FAR *LPLINEPROVIDERENTRY;

LINEPROVIDERLIST

Description

The LINEPROVIDERLIST structure describes a list of service providers. The lineGetProviderList
function returns a structure of this type. The LINEPROVIDERLIST structure can contain an array of
LINEPROVIDERENTRY structures.

Note You must not extend this structure.

Structure Details

typedef struct lineproviderlist_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
DWORD dwNumProviders;
 DWORD dwProviderListSize;
 DWORD dwProviderListOffset;
} LINEPROVIDERLIST, FAR *LPLINEPROVIDERLIST;

Members Values

dwPermanentProviderID The permanent provider identifier of the entry.

dwProviderFilenameSize
dwProviderFilenameOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINEPROVIDERLIST structure of a null-terminated
string containing the filename (path) of the service provider
DLL (.TSP) file.

Members Values

dwTotalSize The total size, in bytes, that are allocated to this
data structure.

dwNeededSize The size, in bytes, for this data structure that is
needed to hold all the returned information.

dwUsedSize The size, in bytes, of the portion of this data
structure that contains useful information.

dwNumProviders The number of LINEPROVIDERENTRY
structures that are present in the array that is
denominated by dwProviderListSize and
dwProviderListOffset.
3-110
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINEREQMAKECALL

Description

The LINEREQMAKECALL structure describes a request that is initiated by a call to the lineGetRequest
function.

Note You cannot extend this structure.

Structure Details

typedef struct linereqmakecall_tag {
 char szDestAddress[TAPIMAXDESTADDRESSSIZE];
 char szAppName[TAPIMAXAPPNAMESIZE];
 char szCalledParty[TAPIMAXCALLEDPARTYSIZE];
 char szComment[TAPIMAXCOMMENTSIZE];
} LINEREQMAKECALL, FAR *LPLINEREQMAKECALL;

dwProviderListSize
dwProviderListOffset

 The size, in bytes, and the offset, in bytes, from
the beginning of this data structure of an array of
LINEPROVIDERENTRY elements, which
provide the information on each service provider.

Members Values

Members Values

szDestAddress
[TAPIMAXADDRESSSIZE]

The null-terminated destination address of the make-call
request. The address uses the canonical address format or the
dialable address format. The maximum length of the address
specifies TAPIMAXDESTADDRESSSIZE characters, which
include the NULL terminator. Longer strings get truncated.

szAppName
[TAPIMAXAPPNAMESIZE]

The null-terminated, user-friendly application name or
filename of the application that originated the request. The
maximum length of the address specifies
TAPIMAXAPPNAMESIZE characters, which include the
NULL terminator.

szCalledParty
[TAPIMAXCALLEDPARTYSIZE]

The null-terminated, user-friendly called-party name. The
maximum length of the called-party information specifies
TAPIMAXCALLEDPARTYSIZE characters, which include
the NULL terminator.

szComment
[TAPIMAXCOMMENTSIZE]

The null-terminated comment about the call request. The
maximum length of the comment string specifies
TAPIMAXCOMMENTSIZE characters, which include the
NULL terminator.
3-111
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINETRANSLATECAPS

Description

The LINETRANSLATECAPS structure describes the address translation capabilities. This structure can
contain an array of LINELOCATIONENTRY structures and an array of LINECARDENTRY structures.
the lineGetTranslateCaps function returns the LINETRANSLATECAPS structure.

Note You must not extend this structure.

Structure Details

typedef struct linetranslatecaps_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwNumLocations;
 DWORD dwLocationListSize;
 DWORD dwLocationListOffset;
 DWORD dwCurrentLocationID;
 DWORD dwNumCards;
 DWORD dwCardListSize;
 DWORD dwCardListOffset;
 DWORD dwCurrentPreferredCardID;
} LINETRANSLATECAPS, FAR *LPLINETRANSLATECAPS;

Members Values

dwTotalSize The total size, in bytes, that is allocated to this data structure.

dwNeededSize The size, in bytes, for this data structure that is needed to hold
all the returned information.

dwUsedSize The size, in bytes, of the portion of this data structure that
contains useful information.

dwNumLocations The number of entries in the location list. It includes all
locations that are defined, including zero (default).

dwLocationListSize
dwLocationListOffset

List of locations that are known to the address translation. The
list comprises a sequence of LINELOCATIONENTRY
structures. The dwLocationListOffset member points to the
first byte of the first LINELOCATIONENTRY structure, and
the dwLocationListSize member indicates the total number of
bytes in the entire list.

dwCurrentLocationID The dwPermanentLocationID member from the
LINELOCATIONENTRY structure for the CurrentLocation.

dwNumCards The number of entries in the CardList.
3-112
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
LINETRANSLATEOUTPUT

Description

The LINETRANSLATEOUTPUT structure describes the result of an address translation. The
lineTranslateAddress function uses this structure.

Note You must not extend this structure.

Structure Details

typedef struct linetranslateoutput_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwDialableStringSize;
 DWORD dwDialableStringOffset;
 DWORD dwDisplayableStringSize;
 DWORD dwDisplayableStringOffset;
 DWORD dwCurrentCountry;
 DWORD dwDestCountry;
 DWORD dwTranslateResults;
} LINETRANSLATEOUTPUT, FAR *LPLINETRANSLATEOUTPUT;

dwCardListSize
dwCardListOffset

List of calling cards that are known to the address translation.
It includes only non-hidden card entries and always includes
card 0 (direct dial). The list comprises a sequence of
LINECARDENTRY structures. The dwCardListOffset member
points to the first byte of the first LINECARDENTRY
structure, and the dwCardListSize member indicates the total
number of bytes in the entire list.

dwCurrentPreferredCardID The dwPreferredCardID member from the
LINELOCATIONENTRY structure for the CurrentLocation.

Members Values

Members Values

dwTotalSize The total size, in bytes, that is allocated to this data structure.

dwNeededSize The size, in bytes, for this data structure that is needed to hold
all the returned information.

dwUsedSize The size, in bytes, of the portion of this data structure that
contains useful information.
3-113
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Line Device Structures
dwDialableStringSize
dwDialableStringOffset

 Contains the translated output that can be passed to the
lineMakeCall, lineDial, or other function that requires a
dialable string. The output always comprises a null-terminated
string (NULL gets included in the count in
dwDialableStringSize). This output string includes ancillary
fields such as name and subaddress if they were in the input
string. This string may contain private information such as
calling card numbers. To prevent inadvertent visibility to
unauthorized persons, it should not display to the user.

dwDisplayableStringSize
dwDisplayableStringOffset

Contains the translated output that can display to the user for
confirmation. Identical to DialableString, except the “friendly
name” of the card enclosed within bracket characters (for
example, “[AT&T Card]”) replaces calling card digits. The
ancillary fields, such as name and subaddress, get removed.
You can display this string in call-status dialog boxes without
exposing private information to unauthorized persons. You can
also include this information in call logs.

dwCurrentCountry Contains the country code that is configured in
CurrentLocation. Use this value to control the display by the
application of certain user interface elements for local call
progress tone detection and for other purposes.

dwDestCountry Contains the destination country code of the translated address.
This value may pass to the dwCountryCode parameter of
lineMakeCall and other dialing functions (so the call progress
tones of the destination country or region such as a busy signal
are properly detected). This field gets set to zero if the
destination address that is passed to lineTranslateAddress is not
in canonical format.

dwTranslateResults Indicates the information that is derived from the translation
process, which may assist the application in presenting
user-interface elements. This field uses one
LINETRANSLATERESULT_.

Members Values
3-114
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
TAPI Phone Functions
TAPI phone functions enable an application to control physical aspects of a phone

phoneCallbackFunc

Description

The phoneCallbackFunc function provides a placeholder for the application-supplied function name.

All callbacks occur in the application context. The callback function must reside in a dynamic-link
library (DLL) or application module and be exported in the module-definition file.

Function Details

VOID FAR PASCAL phoneCallbackFunc(
 HANDLE hDevice,
 DWORD dwMsg,
 DWORD dwCallbackInstance,
 DWORD dwParam1,
 DWORD dwParam2,
 DWORD dwParam3
);

Table 3-4 TAPI Phone Functions

TAPI Phone Functions

phoneCallbackFunc

phoneClose

phoneDevSpecific

phoneGetDevCaps

phoneGetDisplay

phoneGetLamp

phoneGetMessage

phoneGetRing

phoneGetStatus

phoneGetStatusMessages

phoneInitialize

phoneInitializeEx

phoneNegotiateAPIVersion

phoneOpen

phoneSetDisplay

phoneSetLamp

phoneSetStatusMessages

phoneShutdown
3-115
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
Parameters

hDevice

A handle to a phone device that is associated with the callback.

dwMsg

A line or call device message.

dwCallbackInstance

Callback instance data passed to the application in the callback. TAPI does not interpret this
DWORD.

dwParam1

A parameter for the message.

dwParam2

A parameter for the message.

dwParam3

A parameter for the message.

Further Details

For more information about the parameters that are passed to this callback function, see “TAPI Line
Messages” and “TAPI Phone Messages.”

phoneClose

Description

The phoneClose function closes the specified open phone device.

Function Details

LONG phoneClose(
 HPHONE hPhone
);

Parameter

hPhone

A handle to the open phone device that is to be closed. If the function succeeds, the handle is no
longer valid.
3-116
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
phoneDevSpecific

Description

The phoneDevSpecific function gets used as a general extension mechanism to enable a Telephony API
implementation to provide features that are not described in the other TAPI functions. The meanings of
these extensions are device specific.

When used with the Cisco Unified TSP, phoneDevSpecific can be used to send device specific data to a
phone device.

Function Details

LONG WINAPI phoneDevSpecific (
HPHONE hPhone,
LPVOID lpParams,
DWORD dwSize

);

Parameter

hPhone

A handle to a phone device.

lpParams

A pointer to a memory area used to hold a parameter block. Its interpretation is device specific. The
contents of the parameter block are passed unchanged to or from the service provider by TAPI.

dwSize

The size in bytes of the parameter block area.

phoneGetDevCaps

Description

The phoneGetDevCaps function queries a specified phone device to determine its telephony capabilities.

Function Details

LONG phoneGetDevCaps(
 HPHONEAPP hPhoneApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 LPPHONECAPS lpPhoneCaps
);
3-117
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
Parameters

hPhoneApp

The handle to the registration with TAPI for this application.

dwDeviceID

The phone device that is to be queried.

dwAPIVersion

The version number of the Telephony API that is to be used. The high-order word contains the major
version number; the low-order word contains the minor version number. This number is obtained
with the function phoneNegotiateAPIVersion.

dwExtVersion

The version number of the service provider-specific extensions to be used. This number is obtained
with the function phoneNegotiateExtVersion. It can be left zero if no device-specific extensions are
to be used. Otherwise, the high-order word contains the major version number; the low-order word
contains the minor version number.

lpPhoneCaps

A pointer to a variably sized structure of type PHONECAPS. Upon successful completion of the
request, this structure is filled with phone device capabilities information.

phoneGetDisplay

Description

The phoneGetDisplay function returns the current contents of the specified phone display.

Function Details

LONG phoneGetDisplay(
 HPHONE hPhone,
 LPVARSTRING lpDisplay
);

Parameters

hPhone

A handle to the open phone device.

lpDisplay

A pointer to the memory location where the display content is to be stored, of type VARSTRING.
3-118
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
phoneGetLamp

Description

The phoneGetLamp function returns the current lamp mode of the specified lamp.

Note This function is not supported on Cisco 79xx IP Phones.

Function Details

LONG phoneGetLamp(
 HPHONE hPhone,
 DWORD dwButtonLampID,
 LPDWORD lpdwLampMode
);

Parameters

hPhone

A handle to the open phone device.

dwButtonLampID

The identifier of the lamp that is to be queried. See Table 3-7, “Phone Button Values” for lamp IDs.

lpdwLampMode

Note This function is not supported on Cisco 79xx IP Phones.

A pointer to a memory location that holds the lamp mode status of the given lamp. The
lpdwLampMode parameter can have at most one bit set. This parameter uses the following
PHONELAMPMODE_ constants:

– PHONELAMPMODE_FLASH - Flash means slow on and off.

– PHONELAMPMODE_FLUTTER - Flutter means fast on and off.

– PHONELAMPMODE_OFF - The lamp is off.

– PHONELAMPMODE_STEADY - The lamp is continuously lit.

– PHONELAMPMODE_WINK - The lamp is winking.

– PHONELAMPMODE_UNKNOWN - The lamp mode is currently unknown.

– PHONELAMPMODE_DUMMY - Use this value to describe a button/lamp position that has no
corresponding lamp.
3-119
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
phoneGetMessage

Description

The phoneGetMessage function returns the next TAPI message that is queued for delivery to an
application that is using the Event Handle notification mechanism (see phoneInitializeEx for further
details).

Function Details

LONG WINAPI phoneGetMessage(
 HPHONEAPP hPhoneApp,
 LPPHONEMESSAGE lpMessage,
 DWORD dwTimeout
);

Parameters

hPhoneApp

The handle that phoneInitializeEx returns. The application must have set the
PHONEINITIALIZEEXOPTION_USEEVENT option in the dwOptions member of the
PHONEINITIALIZEEXPARAMS structure.

lpMessage

A pointer to a PHONEMESSAGE structure. Upon successful return from this function, the structure
contains the next message that had been queued for delivery to the application.

dwTimeout

The time-out interval, in milliseconds. The function returns if the interval elapses, even if no
message can be returned. If dwTimeout is zero, the function checks for a queued message and
returns immediately. If dwTimeout is INFINITE, the time-out interval never elapses.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

PHONEERR_INVALAPPHANDLE, PHONEERR_OPERATIONFAILED,
PHONEERR_INVALPOINTER, PHONEERR_NOMEM.
3-120
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
phoneGetRing

Description

The phoneGetRing function enables an application to query the specified open phone device as to its
current ring mode.

Function Details

LONG phoneGetRing(
 HPHONE hPhone,
 LPDWORD lpdwRingMode,
 LPDWORD lpdwVolume
);

Parameters

hPhone

A handle to the open phone device.

lpdwRingMode

The ringing pattern with which the phone is ringing. Zero indicates that the phone is not ringing.

The system supports four ring modes.

Table 3-5 lists the valid ring modes.

lpdwVolume

The volume level with which the phone is ringing. This parameter has no meaning, the value 0x8000
always gets returned.

Table 3-5 Ring Modes

Ring Modes Definition

0 Off

1 Inside Ring

2 Outside Ring

3 Feature Ring
3-121
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
phoneGetStatus

Description

The phoneGetStatus function enables an application to query the specified open phone device for its
overall status.

Function Details
LONG WINAPI phoneGetStatusMessages(

HPHONE hPhone,
LPPHONESTATUS lpPhoneStatus
) ;

Parameters

hPhone

A handle to the open phone device to be queried.

lpPhoneStatus

A pointer to a variably sized data structure of type PHONESTATUS, which is loaded with the
returned information about the phone's status.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Return values include
the following:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM PHONEERR_INVALPOINTER,
PHONEERR_RESOURCEUNAVAIL PHONEERR_OPERATIONFAILED,
PHONEERR_STRUCTURETOOSMALL PHONEERR_OPERATIONUNAVAIL,
PHONEERR_UNINITIALIZED

phoneGetStatusMessages

Description

The phoneGetStatusMessages function returns which phone-state changes on the specified phone device
generate a callback to the application.

An application can use phoneGetStatusMessages to query the generation of the corresponding messages.
The phoneSetStatusMessages can control Message generation. All phone status messages remain
disabled by default.

Function Details
LONG WINAPI phoneGetStatusMessages(
 HPHONE hPhone,
 LPDWORD lpdwPhoneStates,
 LPDWORD lpdwButtonModes,
 LPDWORD lpdwButtonStates
);
3-122
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
Parameters

hPhone

A handle to the open phone device that is to be monitored.

lpdwPhoneStates

A pointer to a DWORD holding zero, one or more of the PHONESTATE_ Constants. These flags
specify the set of phone status changes and events for which the application can receive notification
messages. Monitoring can be individually enabled and disabled for the following:

– PHONESTATE_OTHER

– PHONESTATE_CONNECTED

– PHONESTATE_DISCONNECTED

– PHONESTATE_OWNER

– PHONESTATE_MONITORS

– PHONESTATE_DISPLAY

– PHONESTATE_LAMP

– PHONESTATE_RINGMODE

– PHONESTATE_RINGVOLUME

– PHONESTATE_HANDSETHOOKSWITCH

– PHONESTATE_HANDSETVOLUME

– PHONESTATE_HANDSETGAIN

– PHONESTATE_SPEAKERHOOKSWITCH

– PHONESTATE_SPEAKERVOLUME

– PHONESTATE_SPEAKERGAIN

– PHONESTATE_HEADSETHOOKSWITCH

– PHONESTATE_HEADSETVOLUME

– PHONESTATE_HEADSETGAIN

– PHONESTATE_SUSPEND

– PHONESTATE_RESUMEF

– PHONESTATE_DEVSPECIFIC

– PHONESTATE_REINIT

– PHONESTATE_CAPSCHANGE

– PHONESTATE_REMOVED

lpdwButtonModes

A pointer to a DWORD that contains flags that specify the set of phone-button modes for which the
application can receive notification messages. This parameter uses zero, one or more of the
PHONEBUTTONMODE_ Constants.

lpdwButtonStates

A pointer to a DWORD that contains flags that specify the set of phone button state changes for
which the application can receive notification messages. This parameter uses zero, one or more of
the PHONEBUTTONSTATE_ Constants.
3-123
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
are as follows:

PHONEERR_INVALPHONEHANDLE

PHONEERR_NOMEM

PHONEERR_INVALPOINTER

PHONEERR_RESOURCEUNAVAIL

PHONEERR_OPERATIONFAILED

PHONEERR_UNINITIALIZED.

phoneInitialize

Description

Although the phoneInitialize function is obsolete, tapi.dll and tapi32.dll continues to export it for
backward compatibility with applications that are using TAPI versions 1.3 and 1.4.

Function Details
LONG WINAPI phoneInitialize(
 LPHPHONEAPP lphPhoneApp,
 HINSTANCE hInstance,
 PHONECALLBACK lpfnCallback,
 LPCSTR lpszAppName,
 LPDWORD lpdwNumDevs
);

Parameters

lphPhoneApp

A pointer to a location that is filled with the application usage handle for TAPI.

hInstance

The instance handle of the client application or DLL.

lpfnCallback

The address of a callback function that is invoked to determine status and events on the phone
device.

lpszAppName

A pointer to a null-terminated string that contains displayable characters. If this parameter is
non-NULL, it contains an application-supplied name of the application. This name, which is
provided in the PHONESTATUS structure, indicates, in a user-friendly way, which application is
the current owner of the phone device. You can use this information for logging and status reporting
purposes. If lpszAppName is NULL, the application filename gets used instead.

lpdwNumDevs

A pointer to DWORD. This location gets loaded with the number of phone devices that are available
to the application.
3-124
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
are as follow:

PHONEERR_INVALAPPNAME

PHONEERR_INIFILECORRUPT

PHONEERR_INVALPOINTER

PHONEERR_NOMEM

PHONEERR_OPERATIONFAILED

PHONEERR_REINIT

PHONEERR_RESOURCEUNAVAIL

PHONEERR_NODEVICE

PHONEERR_NODRIVER

PHONEERR_INVALPARAM

phoneInitializeEx

Description

The phoneInitializeEx function initializes the application use of TAPI for subsequent use of the phone
abstraction. It registers the application specified notification mechanism and returns the number of
phone devices that are available to the application. A phone device represents any device that provides
an implementation for the phone-prefixed functions in the Telephony API.

Function Details

LONG WINAPI phoneInitializeEx(
 LPHPHONEAPP lphPhoneApp,
 HINSTANCE hInstance,
 PHONECALLBACK lpfnCallback,
 LPCSTR lpszFriendlyAppName,
 LPDWORD lpdwNumDevs,
 LPDWORD lpdwAPIVersion,
 LPPHONEINITIALIZEEXPARAMS lpPhoneInitializeExParams
);

Parameters

lphPhoneApp

A pointer to a location that is filled with the application usage handle for TAPI.

hInstance

The instance handle of the client application or DLL. The application or DLL can pass NULL for
this parameter, in which case TAPI uses the module handle of the root executable of the process.
3-125
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
lpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls, when the application is using the "hidden window" method of event notification
(for more information see phoneCallbackFunc). When the application chooses to use the "event
handle" or "completion port" event notification mechanisms, this parameter gets ignored and should
be set to NULL.

lpszFriendlyAppName

A pointer to a null-terminated string that contains only displayable characters. If this parameter is
not NULL, it contains an application-supplied name for the application. This name, which is
provided in the PHONESTATUS structure, indicates, in a user-friendly way, which application has
ownership of the phone device. If lpszFriendlyAppName is NULL, the application module filename
gets used instead (as returned by the Windows function GetModuleFileName).

lpdwNumDevs

A pointer to a DWORD. Upon successful completion of this request, the number of phone devices
that are available to the application fills this location.

lpdwAPIVersion

A pointer to a DWORD. The application must initialize this DWORD, before calling this function,
to the highest API version that it is designed to support (for example, the same value that it would
pass into dwAPIHighVersion parameter of phoneNegotiateAPIVersion). Do no use artificially high
values; ensure the values are accurately set. TAPI translates any newer messages or structures into
values or formats that the application version supports. Upon successful completion of this request,
the highest API version that is supported by TAPI fills this location, thereby allowing the
application to detect and adapt to having been installed on a system with an older version of TAPI.

lpPhoneInitializeExParams

A pointer to a structure of type PHONEINITIALIZEEXPARAMS that contains additional
parameters that are used to establish the association between the application and TAPI (specifically,
the application selected event notification mechanism and associated parameters).

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
are as follows:

PHONEERR_INVALAPPNAME

PHONEERR_OPERATIONFAILED

PHONEERR_INIFILECORRUPT

PHONEERR_INVALPOINTER

PHONEERR_REINIT

PHONEERR_NOMEM

PHONEERR_INVALPARAM
3-126
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
phoneNegotiateAPIVersion

Description

Use the phoneNegotiateAPIVersion function to negotiate the API version number to be used with the
specified phone device. It returns the extension identifier that the phone device supports, or zeros if no
extensions are provided.

Function Details
LONG WINAPI phoneNegotiateAPIVersion(
 HPHONEAPP hPhoneApp,
 DWORD dwDeviceID,
 DWORD dwAPILowVersion,
 DWORD dwAPIHighVersion,
 LPDWORD lpdwAPIVersion,
 LPPHONEEXTENSIONID lpExtensionID
);

Parameters

hPhoneApp

The handle to the application registration with TAPI.

dwDeviceID

The phone device to be queried.

dwAPILowVersion

The least recent API version with which the application is compliant. The high-order word
represents the major version number, and the low-order word represents the minor version number.

dwAPIHighVersion

The most recent API version with which the application is compliant. The high-order word
represents the major version number, and the low-order word represents the minor version number.

lpdwAPIVersion

A pointer to a DWORD in which the API version number that was negotiated will be returned. If
negotiation succeeds, this number ranges from dwAPILowVersion to dwAPIHighVersion.

lpExtensionID

A pointer to a structure of type PHONEEXTENSIONID. If the service provider for the specified
dwDeviceID parameter supports provider-specific extensions, this structure gets filled with the
extension identifier of these extensions when negotiation succeeds. This structure contains all zeros
if the line provides no extensions. An application can ignore the returned parameter if it does not
use extensions.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
are as follows:

PHONEERR_INVALAPPHANDLE

PHONEERR_OPERATIONFAILED
3-127
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
PHONEERR_BADDEVICEID

PHONEERR_OPERATIONUNAVAIL

PHONEERR_NODRIVER

PHONEERR_NOMEM

PHONEERR_INVALPOINTER

PHONEERR_RESOURCEUNAVAIL,PHONEERR_INCOMPATIBLEAPIVERSION

PHONEERR_UNINITIALIZED

PHONEERR_NODEVICE

phoneOpen

Description

The phoneOpen function opens the specified phone device. The device can be opened by using either
owner privilege or monitor privilege. An application that opens the phone with owner privilege can
control the lamps, display, ringer, and hookswitch or hookswitches that belong to the phone. An
application that opens the phone device with monitor privilege receives notification only about events
that occur at the phone, such as hookswitch changes or button presses. Because ownership of a phone
device is exclusive, only one application at a time can have a phone device opened with owner privilege.
The phone device can, however, be opened multiple times with monitor privilege.

Note To open a phone device on a CTI port, first ensure a corresponding line device is open.

Function Details

LONG phoneOpen(
 HPHONEAPP hPhoneApp,
 DWORD dwDeviceID,
 LPHPHONE lphPhone,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 DWORD dwCallbackInstance,
 DWORD dwPrivilege
);

Parameters

hPhoneApp

A handle by which the application is registered with TAPI.

dwDeviceID

The phone device to be opened.

lphPhone

A pointer to an HPHONE handle that identifies the open phone device. Use this handle to identify
the device when invoking other phone control functions.
3-128
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
dwAPIVersion

The API version number under which the application and Telephony API agreed to operate. Obtain
this number from phoneNegotiateAPIVersion.

dwExtVersion

The extension version number under which the application and the service provider agree to operate.
This number is zero if the application does not use any extensions. Obtain this number from
phoneNegotiateExtVersion.

Note The Cisco Unified TSP does not support any phone extensions.

dwCallbackInstance

User instance data passed back to the application with each message. The Telephony API does not
interpret this parameter.

dwPrivilege

The privilege requested. The dwPrivilege parameter can have only one bit set. This parameter uses
the following PHONEPRIVILEGE_ constants:

– PHONEPRIVILEGE_MONITOR - An application that opens a phone device with this privilege
gets informed about events and state changes occurring on the phone. The application cannot
invoke any operations on the phone device that would change its state.

– PHONEPRIVILEGE_OWNER - An application that opens a phone device in this mode can
change the state of the lamps, ringer, display, and hookswitch devices of the phone. Having
owner privilege to a phone device automatically includes monitor privilege as well.

phoneSetDisplay

Description

The phoneSetDisplay function causes the specified string to display on the specified open phone device.

Note Prior to Release 4.0, Cisco Unified CallManager messages that were passed to the phone would
automatically overwrite any messages sent to the phone using phoneSetDisplay(). In
Cisco Unified CallManager 4.0, the message sent to the phone in the phoneSetDisplay() API will remain
on the phone until the phone is rebooted. If the application wants to clear the text from the display and
see the Cisco Unified CallManager messages again, a NULL string, not spaces, should be passed in the
phoneSetDisplay() API. In other words, the lpsDisplay parameter should be NULL and the dwSize
should be set to 0.

Function Details

LONG phoneSetDisplay(
 HPHONE hPhone,
 DWORD dwRow,
 DWORD dwColumn,
 LPCSTR lpsDisplay,
 DWORD dwSize
);
3-129
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
Parameters

hPhone

A handle to the open phone device. The application must be the owner of the phone.

dwRow

The row position on the display where the new text displays.

dwColumn

The column position on the display where the new text displays.

lpsDisplay

A pointer to the memory location where the display content is stored. The display information must
have the format that is specified in the dwStringFormat member of the device capabilities for this
phone.

dwSize

The size in bytes of the information to which lpsDisplay points.

phoneSetLamp

Description

The phoneSetLamp function causes the specified lamp to be lit on the specified open phone device in
the specified lamp mode.

Function Details

LONG phoneSetLamp(
 HPHONE hPhone,
 DWORD dwButtonLampID,
 DWORD dwLampMode
);

Parameters

hPhone

A handle to the open phone device. Ensure that the application is the owner of the phone.

dwButtonLampID

The button whose lamp is to be illuminated. See “Phone Button Values” Table 3-7 for lamp IDs.

dwLampMode

Note This function is not supported on Cisco 79xx IP Phones.

How the lamp is to be illuminated. The dwLampMode parameter can have only a single bit set. This
parameter uses the following PHONELAMPMODE_ constants:

– PHONELAMPMODE_FLASH - Flash means slow on and off.

– PHONELAMPMODE_FLUTTER - Flutter means fast on and off.
3-130
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
– PHONELAMPMODE_OFF - The lamp is off.

– PHONELAMPMODE_STEADY - The lamp is continuously on.

– PHONELAMPMODE_WINK - The lamp is winking.

– PHONELAMPMODE_DUMMY - This value describes a button/lamp position that has no
corresponding lamp.

phoneSetStatusMessages

Description

The phoneSetStatusMessages function enables an application to monitor the specified phone device for
selected status events.

See “TAPI Phone Messages” for supported messages.

Function Details

LONG phoneSetStatusMessages(
 HPHONE hPhone,
 DWORD dwPhoneStates,
 DWORD dwButtonModes,
 DWORD dwButtonStates
);

Parameters

hPhone

A handle to the open phone device to be monitored.

dwPhoneStates

These flags specify the set of phone status changes and events for which the application can receive
notification messages. This parameter can have zero, one, or more bits set. This parameter uses the
following PHONESTATE_ constants:

– PHONESTATE_OTHER - Phone status items other than those listed below changed. The
application should check the current phone status to determine which items have changed.

– PHONESTATE_OWNER - The number of owners for the phone device changed.

– PHONESTATE_MONITORS - The number of monitors for the phone device changed.

– PHONESTATE_DISPLAY - The display of the phone changed.

– PHONESTATE_LAMP - A lamp of the phone changed.

– PHONESTATE_RINGMODE - The ring mode of the phone changed.

– PHONESTATE_SPEAKERHOOKSWITCH - The hookswitch state changed for this
speakerphone.

– PHONESTATE_REINIT - Items changed in the configuration of phone devices. To become
aware of these changes (as with the appearance of new phone devices) the application should
reinitialize its use of TAPI. New phoneInitialize, phoneInitializeEx, and phoneOpen requests
get denied until applications have shut down their usage of TAPI. The hDevice parameter of the
PHONE_STATE message stays NULL for this state change because it applies to any line in the
3-131
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Functions
system. Because of the critical nature of PHONESTATE_REINIT, such messages cannot be
masked, so the setting of this bit gets ignored and the messages always get delivered to the
application.

– PHONESTATE_REMOVED - Indicates that the service provider is removing the device from
the system by the service provider (most likely through user action, through a control panel or
similar utility). A PHONE_CLOSE message on the device immediately follows a
PHONE_STATE message with this value. Subsequent attempts to access the device prior to
TAPI being reinitialized result in PHONEERR_NODEVICE being returned to the application.
If a service provider sends a PHONE_STATE message that contains this value to TAPI, TAPI
passes it along to applications that have negotiated TAPI version 1.4 or later; applications that
negotiated a previous TAPI version do not receive any notification.

dwButtonModes

The set of phone-button modes for which the application can receive notification messages. This
parameter can have zero, one, or more bits set. This parameter uses the following
PHONEBUTTONMODE_ constants:

– PHONEBUTTONMODE_CALL - The button is assigned to a call appearance.

– PHONEBUTTONMODE_FEATURE - The button is assigned to requesting features from the
switch, such as hold, conference, and transfer.

– PHONEBUTTONMODE_KEYPAD - The button is one of the twelve keypad buttons, ‘0’
through ‘9’, ‘*’, and ‘#’.

– PHONEBUTTONMODE_DISPLAY - The button is a “soft” button associated with the phone
display. A phone set can have zero or more display buttons.

dwButtonStates

The set of phone-button state changes for which the application can receive notification messages.
If the dwButtonModes parameter is zero, the system ignores dwButtonStates. If dwButtonModes
has one or more bits set, this parameter also must have at least one bit set. This parameter uses the
following PHONEBUTTONSTATE_ constants:

– PHONEBUTTONSTATE_UP - The button is in the “up” state.

– PHONEBUTTONSTATE_DOWN - The button is in the “down” state (pressed down).

– PHONEBUTTONSTATE_UNKNOWN - The up or down state of the button is not known at
this time but may become known at a future time.

– PHONEBUTTONSTATE_UNAVAIL - The service provider does not know the up or down
state of the button, and the state will not become known.

phoneShutdown

Description

The phoneShutdown function shuts down the application usage of the TAPI phone abstraction.

Note If this function is called when the application has open phone devices, these devices are closed.
3-132
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Messages
Function Details

LONG WINAPI phoneShutdown(
 HPHONEAPP hPhoneApp
);

Parameter

hPhoneApp

The application usage handle for TAPI.

Return Values

Returns zero if the request succeeds or a negative error number if an error occurs. Possible return values
follow:

PHONEERR_INVALAPPHANDLE, PHONEERR_NOMEM, PHONEERR_UNINITIALIZED,
PHONEERR_RESOURCEUNAVAIL.

TAPI Phone Messages
Messages notify the application of asynchronous events. All messages get sent to the application through
the message notification mechanism that the application specified in lineInitializeEx. The message
always contains a handle to the relevant object (phone, line, or call), of which the application can
determine the type from the message type.

Table 3-6 TAPI Phone Messages

TAPI Phone Messages

PHONE_BUTTON

PHONE_CLOSE

PHONE_CREATE

PHONE_REMOVE

PHONE_REPLY

PHONE_STATE
3-133
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Messages
PHONE_BUTTON

Description

The PHONE_BUTTON message notifies the application that button press monitoring is enabled if it has
detected a button press on the local phone.

Function Details

PHONE_BUTTON
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idButtonOrLamp;
dwParam2 = (DWORD) ButtonMode;
dwParam3 = (DWORD) ButtonState;

Parameters

hPhone

A handle to the phone device.

dwCallbackInstance

The callback instance that is provided when opening the phone device for this application.

dwParam1

The button/lamp identifier of the button that was pressed. Button identifiers zero through 11 always
represent the KEYPAD buttons, with ‘0’ being button identifier zero, ‘1’ being button identifier 1
(and so on through button identifier 9), and with ‘*’ being button identifier 10, and ‘#’ being button
identifier 11. Find additional information about a button identifier with phoneGetDevCaps.

dwParam2

The button mode of the button. The button mode for each button ID gets listed as “Phone Button
Values”.

The TAPI service provider cannot detect button down or button up state changes. To conform to the
TAPI specification, two messages get sent simulating a down state followed by an up state in
dwparam3.

This parameter uses the following PHONEBUTTONMODE_ constants:

– PHONEBUTTONMODE_CALL - The button is assigned to a call appearance.

– PHONEBUTTONMODE_FEATURE - The button is assigned to requesting features from the
switch, such as hold, conference, and transfer.

– PHONEBUTTONMODE_KEYPAD - The button is one of the twelve keypad buttons, ‘0’
through ‘9’, ‘*’, and ‘#’.

– PHONEBUTTONMODE_DISPLAY - The button is a “soft” button that is associated with the
phone display. A phone set can have zero or more display buttons.

dwParam3

Specifies whether this is a button-down event or a button-up event. This parameter uses the
following PHONEBUTTONSTATE_ constants:

– PHONEBUTTONSTATE_UP - The button is in the “up” state.
3-134
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Messages
– PHONEBUTTONSTATE_DOWN - The button is in the “down” state (pressed down).

– PHONEBUTTONSTATE_UNKNOWN - The up or down state of the button is not known at
this time but may become known at a future time.

– PHONEBUTTONSTATE_UNAVAIL - The service provider does not know the up or down
state of the button, and the state cannot become known at a future time.

Button ID values of zero through 11 map to the keypad buttons as defined by TAPI. Values above
11 map to line and feature buttons. The low order part of the DWORD specifies the feature. The
high-order part of the DWORD specifies the instance number of that feature. Table 3-7 lists all
possible values for the low order part of the DWORD corresponding to the feature.

The button ID can be made by the following expression:

ButtonID = (instance << 16) | featureID

Table 3-7 lists the valid phone button values.

Table 3-7 Phone Button Values

Value Feature
Has
Instance Button Mode

0 Keypad button 0 No Keypad

1 Keypad button 1 No Keypad

2 Keypad button 2 No Keypad

3 Keypad button 3 No Keypad

4 Keypad button 4 No Keypad

5 Keypad button 5 No Keypad

6 Keypad button 6 No Keypad

7 Keypad button 7 No Keypad

8 Keypad button 8 No Keypad

9 Keypad button 9 No Keypad

10 Keypad button ‘*’ No Keypad

11 Keypad button ‘#’ No Keypad

12 Last Number Redial No Feature

13 Speed Dial Yes Feature

14 Hold No Feature

15 Transfer No Feature

16 Forward All (for line one) No Feature

17 Forward Busy (for line one) No Feature

18 Forward No Answer (for line one) No Feature

19 Display No Feature

20 Line Yes Call

21 Chat (for line one) No Feature

22 Whiteboard (for line one) No Feature

23 Application Sharing (for line one) No Feature
3-135
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Messages
PHONE_CLOSE

Description

The PHONE_CLOSE message gets sent when an open phone device is forcibly closed as part of resource
reclamation. The device handle is no longer valid after this message is sent.

Function Details

PHONE_CLOSE
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) 0;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

hPhone

A handle to the open phone device that was closed. The handle is no longer valid after this message
is sent.

dwCallbackInstance

The callback instance of the application that is provided on an open phone device.

dwParam1 is not used.

dwParam2 is not used.

dwParam3 is not used.

24 T120 File Transfer (for line one) No Feature

25 Video (for line one) No Feature

26 Voice Mail (for line one) No Feature

27 Answer Release No Feature

28 Auto-answer No Feature

44 Generic Custom Button 1 Yes Feature

45 Generic Custom Button 2 Yes Feature

46 Generic Custom Button 3 Yes Feature

47 Generic Custom Button 4 Yes Feature

48 Generic Custom Button 5 Yes Feature

Table 3-7 Phone Button Values (continued)

Value Feature
Has
Instance Button Mode
3-136
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Messages
PHONE_CREATE

Description

The PHONE_CREATE message gets sent to inform applications of the creation of a new phone device.

Note CTI Manager cluster support, extension mobility, change notification, and user addition to the directory
can generate PHONE_CREATE events.

Function Details
PHONE_CREATE
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) idDevice;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

hPhone is not used.

dwCallbackInstance is not used.

dwParam1

The dwDeviceID of the newly created device.

dwParam2 is not used.

dwParam3 is not used.

PHONE_REMOVE

Description

The PHONE_REMOVE message gets sent to inform an application of the removal (deletion from the
system) of a phone device. Generally, this method does not get used for temporary removals, such as
extraction of PCMCIA devices, but only for permanent removals in which the device would no longer
be reported by the service provider, if TAPI were reinitialized.

Note CTI Manager cluster support, extension mobility, change notification, and user deletion from the
directory can generate PHONE_REMOVE events.

Function Details
PHONE_REMOVE
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) dwDeviceID;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;
3-137
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Messages
Parameters

dwDevice is reserved. Set to zero.

dwCallbackInstance is reserved. Set to zero.

dwParam1

Identifier of the phone device that was removed.

dwParam2 is reserved. Set to zero.

dwParam3 is reserved. Set to zero.

PHONE_REPLY

Description

The TAPI PHONE_REPLY message gets sent to an application to report the results of function call that
completed asynchronously.

Function Details

PHONE_REPLY
hPhone = (HPHONE) 0;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idRequest;
dwParam2 = (DWORD) Status;
dwParam3 = (DWORD) 0;

Parameters

hPhone is not used.

dwCallbackInstance

Returns the application callback instance.

dwParam1

The request identifier for which this is the reply.

dwParam2

The success or error indication. The application should cast this parameter into a LONG. Zero
indicates success; a negative number indicates an error.

dwParam3 is not used.
3-138
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Messages
PHONE_STATE

Description

TAPI sends the PHONE_STATE message to an application whenever the status of a phone device
changes.

Function Details

PHONE_STATE
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) PhoneState;
dwParam2 = (DWORD) PhoneStateDetails;
dwParam3 = (DWORD) 0;

Parameters

hPhone

A handle to the phone device.

dwCallbackInstance

The callback instance that is provided when the phone device is opened for this application.

dwParam1

The phone state that changed. This parameter uses the following PHONESTATE_ constants:

– PHONESTATE_OTHER - Phone-status items other than those listed below changed. The
application should check the current phone status to determine which items changed.

– PHONESTATE_CONNECTED - The connection between the phone device and TAPI was just
made. This happens when TAPI is first invoked or when the wire that connects the phone to the
computer is plugged in while TAPI is active.

– PHONESTATE_DISCONNECTED - The connection between the phone device and TAPI was
just broken. This happens when the wire that connects the phone set to the computer is
unplugged while TAPI is active.

– PHONESTATE_OWNER - The number of owners for the phone device changed.

– PHONESTATE_MONITORS - The number of monitors for the phone device changed.

– PHONESTATE_DISPLAY - The display of the phone changed.

– PHONESTATE_LAMP - A lamp of the phone changed.

– PHONESTATE_RINGMODE - The ring mode of the phone changed.

– PHONESTATE_ HANDSETHOOKSWITCH - The hookswitch state changed for this
speakerphone.

– PHONESTATE_REINIT - Items changed in the configuration of phone devices. To become
aware of these changes (as with the appearance of new phone devices), the application should
reinitialize its use of TAPI. The hDevice parameter of the PHONE_STATE message stays
NULL for this state change as it applies to any of the phones in the system.
3-139
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Messages
– PHONESTATE_REMOVED - Indicates that the device is being removed from the system by
the service provider (most likely through user action, through a control panel or similar utility).
Normally, a PHONE_CLOSE message on the device immediately follows a PHONE_STATE
message with this value. Subsequent attempts to access the device prior to TAPI being
reinitialized result in PHONEERR_NODEVICE being returned to the application. If a service
provider sends a PHONE_STATE message that contains this value to TAPI, TAPI passes it
along to applications that have negotiated TAPI version 1.4 or later; applications that negotiated
a previous API version do not receive any notification.

dwParam2

Phone state-dependent information detailing the status change. This parameter does not used if
multiple flags are set in dwParam1 because multiple status items get changed. The application
should invoke phoneGetStatus to obtain a complete set of information.

Parameter dwparam2 can be one of PHONESTATE_LAMP, PHONESTATE_DISPLAY,
PHONESTATE_HANDSETHOOKSWITCH or PHONESTATE_RINGMODE. Because the
Cisco Unified TSP cannot differentiate among hook switches for handsets, headsets, or speaker, the
PHONESTATE_HANDSETHOOKSWITCH value will always get used for hook switches.

If dwparam2 is PHONESTATE_LAMP, dwparam2 will be the button ID that is defined as in the
PHONE_BUTTON message.

If dwParam1 is PHONESTATE_OWNER, dwParam2 contains the new number of owners.

If dwParam1 is PHONESTATE_MONITORS, dwParam2 contains the new number of monitors.

If dwParam1 is PHONESTATE_LAMP, dwParam2 contains the button/lamp identifier of the lamp
that changed.

If dwParam1 is PHONESTATE_RINGMODE, dwParam2 contains the new ring mode.

If dwParam1 is PHONESTATE_HANDSET, SPEAKER, or HEADSET, dwParam2 contains the
new hookswitch mode of that hookswitch device. This parameter uses the following
PHONEHOOKSWITCHMODE_ constants:

– PHONEHOOKSWITCHMODE_ONHOOK - The microphone and speaker both remain on
hook for this device.

– PHONEHOOKSWITCHMODE_MICSPEAKER - The microphone and speaker both remain
active for this device. The Cisco Unified TSP cannot distinguish among handsets, headsets, or
speakers, so this value gets sent when the device is off hook.

dwParam3

The TAPI specification specifies that dwparam3 is zero; however, the Cisco Unified TSP will send
the new lamp state to the application in dwparam3 to avoid the call to phoneGetLamp to obtain the
state when dwparam2 is PHONESTATE_LAMP.
3-140
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Structures
TAPI Phone Structures
This section describes the TAPI Phone Structures supported by Cisco Unified TSP.

.

PHONECAPS
This section lists the Cisco-set attributes for each member of the PHONECAPS structure. If the value of
a structure member is device, line, or call specific, the value for each condition is noted.

Members

dwProviderInfoSize

dwProviderInfoOffset

"Cisco Unified TSPxxx.TSP: Cisco IP PBX Service Provider Ver. X.X(x.x)" where the text before
the colon specifies the file name of the TSP, and the text after "Ver. " specifies the version of the
TSP.

dwPhoneInfoSize

dwPhoneInfoOffset

 "DeviceType:[type]" where type specifies the device type that is specified in the
Cisco Unified CallManager database.

dwPermanentPhoneID

dwPhoneNameSize

dwPhoneNameOffset

"Cisco Phone: [deviceName]" where deviceName specifies the name of the device in the
Cisco Unified CallManager database.

dwStringFormat

STRINGFORMAT_ASCII

dwPhoneStates

PHONESTATE_OWNER |

PHONESTATE_MONITORS |

PHONESTATE_DISPLAY | (Not set for CTI Route Points)

PHONESTATE_LAMP | (Not set for CTI Route Points)

PHONESTATE_RESUME |

Table 3-8 TAPI Phone Structures

TAPI Phone Structure

PHONECAPS

PHONEINITIALIZEEXPARAMS

PHONEMESSAGE

PHONESTATUS

VARSTRING
3-141
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Structures
PHONESTATE_REINIT |

PHONESTATE_SUSPEND

dwHookSwitchDevs

PHONEHOOKSWITCHDEV_HANDSET (Not set for CTI Route Points)

dwHandsetHookSwitchModes

PHONEHOOKSWITCHMODE_ONHOOK | (Not set for CTI Route Points)

PHONEHOOKSWITCHMODE_MICSPEAKER | (Not set for CTI Route Points)

PHONEHOOKSWITCHMODE_UNKNOWN (Not set for CTI Route Points)

dwDisplayNumRows (Not set for CTI Route Points)

1

dwDisplayNumColumns

20 (Not set for CTI Route Points)

dwNumRingModes

3 (Not set for CTI Route Points)

dwPhoneFeatures (Not set for CTI Route Points)

PHONEFEATURE_GETDISPLAY |

PHONEFEATURE_GETLAMP |

PHONEFEATURE_GETRING |

PHONEFEATURE_SETDISPLAY |

PHONEFEATURE_SETLAMP

dwMonitoredHandsetHookSwitchModes

PHONEHOOKSWITCHMODE_ONHOOK | (Not set for CTI Route Points)

PHONEHOOKSWITCHMODE_MICSPEAKER (Not set for CTI Route Points)

PHONEINITIALIZEEXPARAMS

Description

The PHONEINITIALIZEEXPARAMS structure contains parameters that are used to establish the
association between an application and TAPI; for example, the application selected event notification
mechanism. The phoneInitializeEx function uses this structure.

Structure Details

typedef struct phoneinitializeexparams_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwOptions;
 union
 {
 HANDLE hEvent;
 HANDLE hCompletionPort;
3-142
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Structures
 } Handles;
 DWORD dwCompletionKey;
} PHONEINITIALIZEEXPARAMS, FAR *LPPHONEINITIALIZEEXPARAMS;

Members

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful information.

dwOptions

One of the PHONEINITIALIZEEXOPTION_ Constants. Specifies the event notification
mechanism that the application desires to use.

hEvent

If dwOptions specifies PHONEINITIALIZEEXOPTION_USEEVENT, TAPI returns the event
handle in this member.

hCompletionPort

If dwOptions specifies PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT, the
application must specify in this member the handle of an existing completion port that is opened
using CreateIoCompletionPort.

dwCompletionKey

If dwOptions specifies PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT, the
application must specify in this field a value that is returned through the lpCompletionKey
parameter of GetQueuedCompletionStatus to identify the completion message as a telephony
message.

PHONEMESSAGE

Description

The PHONEMESSAGE structure contains the next message that is queued for delivery to the
application. The phoneGetMessage function returns the following structure.

Structure Details

typedef struct phonemessage_tag {
 DWORD hDevice;
 DWORD dwMessageID;
 DWORD_PTR dwCallbackInstance;
 DWORD_PTR dwParam1;
 DWORD_PTR dwParam2;
 DWORD_PTR dwParam3;
} PHONEMESSAGE, FAR *LPPHONEMESSAGE;
3-143
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Structures
Members

hDevice

A handle to a phone device.

dwMessageID

A phone message.

dwCallbackInstance

Instance data that is passed back to the application, which the application specified in
phoneInitializeEx. This DWORD is not interpreted by TAPI.

dwParam1

A parameter for the message.

dwParam2

A parameter for the message.

dwParam3

A parameter for the message.

Further Details

For details on the parameter values that are passed in this structure, see “TAPI Phone Messages.”

PHONESTATUS

Description

The PHONESTATUS structure describes the current status of a phone device. The phoneGetStatus and
TSPI_phoneGetStatus functions return this structure.

Device-specific extensions should use the DevSpecific (dwDevSpecificSize and dwDevSpecificOffset)
variably sized area of this data structure.

Note The dwPhoneFeatures member is available only to applications that open the phone device with an API
version of 2.0 or later.

Structure Details

typedef struct phonestatus_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwStatusFlags;
 DWORD dwNumOwners;
 DWORD dwNumMonitors;
 DWORD dwRingMode;
 DWORD dwRingVolume;
 DWORD dwHandsetHookSwitchMode;
 DWORD dwHandsetVolume;
 DWORD dwHandsetGain;
3-144
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Structures
 DWORD dwSpeakerHookSwitchMode;
 DWORD dwSpeakerVolume;
 DWORD dwSpeakerGain;
 DWORD dwHeadsetHookSwitchMode;
 DWORD dwHeadsetVolume;
 DWORD dwHeadsetGain;
 DWORD dwDisplaySize;
 DWORD dwDisplayOffset;
 DWORD dwLampModesSize;
 DWORD dwLampModesOffset;
 DWORD dwOwnerNameSize;
 DWORD dwOwnerNameOffset;
 DWORD dwDevSpecificSize;
 DWORD dwDevSpecificOffset;

DWORD dwPhoneFeatures;
} PHONESTATUS, FAR *LPPHONESTATUS;

Members

dwTotalSize

The total size, in bytes, allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful information.

dwStatusFlags

Provides a set of status flags for this phone device. This member uses one of the
PHONESTATUSFLAGS_ Constants.

dwNumOwners

The number of application modules with owner privilege for the phone.

dwNumMonitors

The number of application modules with monitor privilege for the phone.

dwRingMode

The current ring mode of a phone device.

dwRingVolume

0x8000

dwHandsetHookSwitchMode

The current hookswitch mode of the phone's handset. PHONEHOOKSWITCHMODE_UNKNOWN

dwHandsetVolume

0

dwHandsetGain

0

dwSpeakerHookSwitchMode

The current hookswitch mode of the phone's speakerphone.
PHONEHOOKSWITCHMODE_UNKNOWN
3-145
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Structures
dwSpeakerVolume

0

dwSpeakerGain

0

dwHeadsetHookSwitchMode

The current hookswitch mode of the phone's headset. PHONEHOOKSWITCHMODE_UNKNOWN

dwHeadsetVolume

0

dwHeadsetGain

0

dwDisplaySize

dwDisplayOffset

0

dwLampModesSize

dwLampModesOffset

0

dwOwnerNameSize

dwOwnerNameOffset

The size, in bytes, of the variably sized field containing the name of the application that is the
current owner of the phone device, and the offset, in bytes, from the beginning of this data structure.
The name is the application name provided by the application when it invoked with phoneInitialize
or phoneInitializeEx. If no application name was supplied, the application's filename is used instead.
If the phone currently has no owner, dwOwnerNameSize is zero.

dwDevSpecificSize

dwDevSpecificOffset

Application can send XSI data to phone using DeviceDataPassThrough device specific extension.
Phone can pass back data to Application. The data is returned as part of this field. The format of the
data is as follows:

struct PhoneDevSpecificData

{
 DWORD m_DeviceDataSize ; // size of device data
 DWORD m_DeviceDataOffset ; // offset from PHONESTATUS

structure
 // this will follow the actual variable length device data.
}

dwPhoneFeatures

The application negotiates an extension version >= 0x00020000. The following features are supported:

• PHONEFEATURE_GETDISPLAY

• PHONEFEATURE_GETLAMP

• PHONEFEATURE_GETRING

• PHONEFEATURE_SETDISPLAY

• PHONEFEATURE_SETLAMP
3-146
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 TAPI Phone Structures
VARSTRING

Description

The VARSTRING structure returns variably sized strings. The line device class and the phone device
class both use it.

Note No extensibility exists with VARSTRING.

Structure Details

typedef struct varstring_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwStringFormat;
 DWORD dwStringSize;
 DWORD dwStringOffset;
} VARSTRING, FAR *LPVARSTRING;

Members

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful information.

dwStringFormat

The format of the string. This member uses one of the STRINGFORMAT_ Constants.

dwStringSize

dwStringOffset

The size, in bytes, of the variably sized device field that contains the string information and the
offset, in bytes, from the beginning of this data structure.

If a string cannot be returned in a variable structure, the dwStringSize and dwStringOffset members
get set in one of the following ways:

dwStringSize and dwStringOffset members both get set to zero.

dwStringOffset gets set to nonzero and dwStringSize gets set to zero.

dwStringOffset gets set to nonzero, dwStringSize gets set to 1, and the byte at the given offset
gets set to zero.
3-147
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 Wave
Wave
The AVAudio32.dll implements the Wave interfaces to the Cisco wave drivers. The system supports all
APIs for input and output waveform devices.

.

waveInAddBuffer

Description

The waveInAddBuffer function sends an input buffer to the given waveform-audio input device. When
the buffer is filled, the application receives notification.

Function Details

MMRESULT waveInAddBuffer(
 HWAVEIN hwi,
 LPWAVEHDR pwh,
 UINT cbwh
);

Table 3-9 WaveFunctions

Wave Functions

waveInAddBuffer

waveInClose

waveInGetID

waveInGetPosition

waveInOpen

waveInPrepareHeader

waveInReset

waveInStart

waveInUnprepareHeader

waveOutPrepareHeader

waveOutGetDevCaps

waveOutGetID

waveOutGetPosition

waveOutOpen

waveOutPrepareHeader

waveOutReset

waveOutUnprepareHeader

waveOutWrite
3-148
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 Wave
Parameters

hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure that identifies the buffer.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveInClose

Description

The waveInClose function closes the given waveform-audio input device.

Function Details

MMRESULT waveInClose(
 HWAVEIN hwi
);

Parameter

hwi

Handle of the waveform-audio input device. If the function succeeds, the handle no longer remains
valid after this call.

waveInGetID

Description

The waveInGetID function gets the device identifier for the given waveform-audio input device.

This function gets supported for backward compatibility. New applications can cast a handle of the
device rather than retrieving the device identifier.

Function Details

MMRESULT waveInGetID(
 HWAVEIN hwi,
 LPUINT puDeviceID
);
3-149
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 Wave
Parameters

hwi

Handle of the waveform-audio input device.

puDeviceID

Address of a variable to be filled with the device identifier.

waveInGetPosition

Description

The waveInGetPosition function retrieves the current input position of the given waveform-audio input
device.

Function Details

MMRESULT waveInGetPosition(
 HWAVEIN hwi,
 LPMMTIME pmmt,
 UINT cbmmt
);

Parameters

hwi

Handle of the waveform-audio input device.

pmmt

Address of the MMTIME structure.

cbmmt

Size, in bytes, of the MMTIME structure.

waveInOpen

Description

The waveInOpen function opens the given waveform-audio input device for recording.

Function Details
MMRESULT waveInOpen(
 LPHWAVEIN phwi,
 UINT uDeviceID,
 LPWAVEFORMATEX pwfx,
 DWORD dwCallback,
 DWORD dwCallbackInstance,
 DWORD fdwOpen
);
3-150
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 Wave
Parameters

phwi

Address that is filled with a handle that identifies the open waveform-audio input device. Use this
handle to identify the device when calling other waveform-audio input functions. This parameter
can be NULL if WAVE_FORMAT_QUERY is specified for fdwOpen.

uDeviceID

Identifier of the waveform-audio input device to open. It can be either a device identifier or a handle
of an open waveform-audio input device. You can use the following flag instead of a device
identifier:

WAVE_MAPPER - The function selects a waveform-audio input device that is capable of recording
in the specified format.

pwfx

Address of a WAVEFORMATEX structure that identifies the desired format for recording
waveform-audio data. You can free this structure immediately after waveInOpen returns.

Note The formats that the TAPI Wave Driver supports include a 16-bit PCM at 8000 Hz, 8-bit
mulaw at 8000 Hz, and 8-bit alaw at 8000 Hz.

dwCallback

Address of a fixed callback function, an event handle, a handle to a window, or the identifier of a
thread to be called during waveform-audio recording to process messages that are related to the
progress of recording. If no callback function is required, this value can specify zero. For more
information on the callback function, see waveInProc in the TAPI API.

dwCallbackInstance

User-instance data that is passed to the callback mechanism. This parameter does not get used with
the window callback mechanism.

fdwOpen

Flags for opening the device. The following values definitions apply:

– CALLBACK_EVENT - The dwCallback parameter specifies an event handle.

– CALLBACK_FUNCTION - The dwCallback parameter specifies a callback procedure address.

– CALLBACK_NULL - No callback mechanism. This represents the default setting.

– CALLBACK_THREAD - The dwCallback parameter specifies a thread identifier.

– CALLBACK_WINDOW - The dwCallback parameter specifies a window handle.

– WAVE_FORMAT_DIRECT - If this flag is specified, the ACM driver does not perform
conversions on the audio data.

– WAVE_FORMAT_QUERY - The function queries the device to determine whether it supports
the given format, but it does not open the device.

– WAVE_MAPPED - The uDeviceID parameter specifies a waveform-audio device to which the
wave mapper maps.
3-151
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 Wave
waveInPrepareHeader

Description

The waveInPrepareHeader function prepares a buffer for waveform-audio input.

Function Details

MMRESULT waveInPrepareHeader(
 HWAVEIN hwi,
 LPWAVEHDR pwh,
 UINT cbwh
);

Parameters

hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure that identifies the buffer to be prepared.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveInReset

Description

The waveInReset function stops input on the given waveform-audio input device and resets the current
position to zero. All pending buffers get marked as done and get returned to the application.

Function Details

MMRESULT waveInReset(
 HWAVEIN hwi
);

Parameter

hwi

Handle of the waveform-audio input device.
3-152
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 Wave
waveInStart

Description

The waveInStart function starts input on the given waveform-audio input device.

Function Details

MMRESULT waveInStart(
 HWAVEIN hwi
);

Parameter

hwi

Handle of the waveform-audio input device.

waveInUnprepareHeader

Description

The waveInUnprepareHeader function cleans up the preparation that the waveInPrepareHeader function
performs. This function must be called after the device driver fills a buffer and returns it to the
application. You must call this function before freeing the buffer.

Function Details

MMRESULT waveInUnprepareHeader(
 HWAVEIN hwi,
 LPWAVEHDR pwh,
 UINT cbwh
);

Parameters

hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure that identifies the buffer to be cleaned up.

cbwh

Size, in bytes, of the WAVEHDR structure.
3-153
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 Wave
waveOutClose

Description

The waveOutClose function closes the given waveform-audio output device.

Function Details

MMRESULT waveOutClose(
 HWAVEOUT hwo
);

Parameter

hwo

Handle of the waveform-audio output device. If the function succeeds, the handle no longer remains
valid after this call.

waveOutGetDevCaps

Description

The waveOutGetDevCaps function retrieves the capabilities of a given waveform-audio output device.

Function Details

MMRESULT waveOutGetDevCaps(
 UINT uDeviceID,
 LPWAVEOUTCAPS pwoc,
 UINT cbwoc
);

Parameters

uDeviceID

Identifier of the waveform-audio output device. It can be either a device identifier or a handle of an
open waveform-audio output device.

pwoc

Address of a WAVEOUTCAPS structure that is to be filled with information about the capabilities
of the device.

cbwoc

Size, in bytes, of the WAVEOUTCAPS structure.
3-154
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 Wave
waveOutGetID

Description

The waveOutGetID function retrieves the device identifier for the given waveform-audio output device.

This function gets supported for backward compatibility. New applications can cast a handle of the
device rather than retrieving the device identifier.

Function Details

MMRESULT waveOutGetID(
 HWAVEOUT hwo,
 LPUINT puDeviceID
);

Parameters

hwo

Handle of the waveform-audio output device.

puDeviceID

Address of a variable to be filled with the device identifier.

waveOutGetPosition

Description

The waveOutGetPosition function retrieves the current playback position of the given waveform-audio
output device.

Function Details

MMRESULT waveOutGetPosition(
 HWAVEOUT hwo,
 LPMMTIME pmmt,
 UINT cbmmt
);

Parameters

hwo

Handle of the waveform-audio output device.

pmmt

Address of an MMTIME structure.

cbmmt

Size, in bytes, of the MMTIME structure.
3-155
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 Wave
waveOutOpen

Description

The waveOutOpen function opens the given waveform-audio output device for playback.

Function Details

MMRESULT waveOutOpen(
 LPHWAVEOUT phwo,
 UINT uDeviceID,
 LPWAVEFORMATEX pwfx,
 DWORD dwCallback,
 DWORD dwCallbackInstance,
 DWORD fdwOpen
);

Parameters

phwo

Address that is filled with a handle identifying the open waveform-audio output device. Use the
handle to identify the device when other waveform-audio output functions are called. This
parameter might be NULL if the WAVE_FORMAT_QUERY flag is specified for fdwOpen.

uDeviceID

Identifier of the waveform-audio output device to open. It can be either a device identifier or a
handle of an open waveform-audio input device. You can use the following flag instead of a device
identifier:

WAVE_MAPPER - The function selects a waveform-audio output device that is capable of playing
the given format.

pwfx

Address of a WAVEFORMATEX structure that identifies the format of the waveform-audio data to
be sent to the device. You can free this structure immediately after passing it to waveOutOpen.

Note The formats that the TAPI Wave Driver supports include 16-bit PCM at 8000 Hz, 8-bit
mulaw at 8000 Hz, and 8-bit alaw at 8000 Hz.

dwCallback

Address of a fixed callback function, an event handle, a handle to a window, or the identifier of a
thread to be called during waveform-audio playback to process messages that are related to the
progress of the playback. If no callback function is required, this value can specify zero. For more
information on the callback function, see waveOutProc in the TAPI API.

dwCallbackInstance

User-instance data that is passed to the callback mechanism. This parameter does not get used with
the window callback mechanism.
3-156
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 Wave
fdwOpen

Flags for opening the device. The following value definitions apply:

– CALLBACK_EVENT - The dwCallback parameter represents an event handle.

– CALLBACK_FUNCTION - The dwCallback parameter specifies a callback procedure address.

– CALLBACK_NULL - No callback mechanism. This value specifies the default setting.

– CALLBACK_THREAD - The dwCallback parameter represents a thread identifier.

– CALLBACK_WINDOW - The dwCallback parameter specifies a window handle.

– WAVE_ALLOWSYNC - If this flag is specified, a synchronous waveform-audio device can be
opened. If this flag is not specified while a synchronous driver is opened, the device will fail to
open.

– WAVE_FORMAT_DIRECT - If this flag is specified, the ACM driver does not perform
conversions on the audio data.

– WAVE_FORMAT_QUERY - If this flag is specified, waveOutOpen queries the device to
determine whether it supports the given format, but the device does not actually open.

– WAVE_MAPPED - If this flag is specified, the uDeviceID parameter specifies a
waveform-audio device to which the wave mapper maps.

waveOutPrepareHeader

Description

The waveOutPrepareHeader function prepares a waveform-audio data block for playback.

Function Details

MMRESULT waveOutPrepareHeader(
 HWAVEOUT hwo,
 LPWAVEHDR pwh,
 UINT cbwh
);

Parameters

hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure that identifies the data block to be prepared.

cbwh

Size, in bytes, of the WAVEHDR structure.
3-157
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 Wave
waveOutReset

Description

The waveOutReset function stops playback on the given waveform-audio output device and resets the
current position to zero. All pending playback buffers get marked as done and get returned to the
application.

Function Details

MMRESULT waveOutReset(
 HWAVEOUT hwo
);

Parameter

hwo

Handle of the waveform-audio output device.

waveOutUnprepareHeader

Description

The waveOutUnprepareHeader function cleans up the preparation that the waveOUtPrepareHeader
function performs. Ensure this function is called after the device driver is finished with a data block. You
must call this function before freeing the buffer.

Function Details

MMRESULT waveOutUnprepareHeader(
 HWAVEOUT hwo,
 LPWAVEHDR pwh,
 UINT cbwh
);

Parameters

hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure that identifies the data block to be cleaned up.

cbwh

Size, in bytes, of the WAVEHDR structure.
3-158
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 Wave
waveOutWrite

Description

The waveOutWrite function sends a data block to the given waveform-audio output device.

Function Details

MMRESULT waveOutWrite(
 HWAVEOUT hwo,
 LPWAVEHDR pwh,
 UINT cbwh
);

Parameters

hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure that contains information about the data block.

cbwh

Size, in bytes, of the WAVEHDR structure.
3-159
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 3 Cisco Unified TAPI Implementation
 Wave
3-160
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Cisco Unified TAPI Developers G
OL-9442-01
C H A P T E R 4

Cisco Device Specific Extensions

This chapter describes the Cisco device-specific TAPI extensions. It describes how to invoke the Cisco
device-specific TAPI extensions with the lineDevSpecific function. It also describes a set of classes that
can be used when calling phoneDevSpecific.

Cisco Line Device Specific Extensions
CiscoLineDevSpecific, the CCiscoPhoneDevSpecific class, represents the parent class.

Table 4-1 lists the subclasses of Cisco Line Device Specific Extensions.

Table 4-1 Cisco-Specific TAPI functions

Cisco Functions Synopsis

CCiscoLineDevSpecific The CCiscoLineDevSpecific class specifies the parent class to the
following classes.

Message Waiting The CCiscoLineDevSpecificMsgWaiting class turns the message
waiting lamp on or off for the line that the hLine parameter specifies.

Message Waiting Dirn The CCiscoLineDevSpecificMsgWaiting class turns the message
waiting lamp on or off for the line that a parameter and remains
independent of the hLine parameter specifies.

Audio Stream Control The CCiscoLineDevSpecificUserControlRTPStream class controls the
audio stream for a line.

Set Status Messages The CCiscoLineDevSpecificSetStatusMsgs class controls the reporting
of certain line device specific messages for a line. The application
receives LINE_DEVSPECIFIC messages to signal when to stop and
start streaming RTP audio.

Swap-Hold/SetupTransfer This is not supported in Cisco Unified TSP 4.0 and higher.
The CCiscoLineDevSpecificSwapHoldSetupTransfer class performs a
setupTransfer between a call that is in CONNECTED state and a call
that is in ONHOLD state. This function will change the state of the
connected call to ONHOLDPENDTRANSFER state and the ONHOLD
call to CONNECTED state. This action will then allow a
completeTransfer to be performed on the two calls.
4-1
uide for Cisco Unified CallManager 5.0

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Redirect Reset Original
Called ID

The CCiscoLineDevSpecificRedirectResetOrigCalled class gets used to
redirects a call to another party while resetting the original called ID of
the call to the destination of the redirect.

Port Registration per Call The CciscoLineDevSpecificPortRegistrationPerCall class gets used to
register a CTI Port or route Point for the Dynamic Port Registration
feature, which allows applications to specify the IP address and UDP
port number on a call-by-call basis.

Setting RTP Parameters for
Call

The CciscoLineDevSpecificSetRTPParamsForCall class sets the IP
address and UDP port number for the specified call.

Redirect Set Original Called
ID

The CciscoLineDevSpecificSetOrigCalled class gets used to redirect a
call to another party while setting the original called ID of the call to any
other party.

Join The CciscoLineDevSpecificJoin class gets used to join two or more calls
into one conference call.

Set User SRTP Algorithm
IDs

The CciscoLineDevSpecificUserSetSRTPAlgorithmID class is used to
allow application to set SRTP algorithm IDs. Ths cilass should be used
after lineopen and before
CCiscoLineDevSpecificSetRTPParamsForCall or
CCiscoLineDevSpecificUserControlRTPStream

Explicit Acquire The CciscoLineDevSpecificAcquire class is used to Explicitly acquire
any CTI Controllable device in the Cisco Unified CallManager system,
which needs to be opened in Super Provider mode.

Explicit De-Acquire The CciscoLineDevSpecificDeacquire class is used to Explicitly
De-acquire any CTI Controllable device in the
Cisco Unified CallManager system.

Redirect FAC CMC The CCiscoLineDevSpecificRedirectFACCMC class is used to redirect
a call to another party while including a FAC, CMC, or both.

Blind Transfer FAC CMC The CCiscoLineDevSpecificBlindTransferFACCMC class is used to
blind transfer a call to another party while including a FAC, CMC, or
both.

CTI Port Third Party
Monitor

The CCiscoLineDevSpecificCTIPortThirdPartyMonitor class is used to
open a CTI port in third party mode.

Send Line Open The CciscoLineDevSpecificSendLineOpen class is used to trigger
actual line open from TSP side. This is used for delayed open
mechanism.

Table 4-1 Cisco-Specific TAPI functions (continued)

Cisco Functions Synopsis
4-2
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Structures
This section describes device-specific extensions that have been made to the TAPI structures that the
Cisco Unified TSP supports.

LINEDEVCAPS Device Specific Extensions

Description

The LineDevCaps_DevSpecificData structure describes the device-specific extensions that the
Cisco Unified TSP has made to the LINEDEVCAPS structure.

Detail

A
typedef struct LineDevCaps_DevSpecificData
{
 DWORD m_DevSpecificFlags;
}LINEDEVCAPS_DEV_SPECIFIC_DATA;

Note This extension is only available if extension version 3.0 (0x00030000) or higher is negotiated.

B
typedef struct LocaleInfo
{

DWORD Locale; //This will have the locale info of the device
DWORD PartitionOffset;

DWORD PartitionSize; //This will have the partition info of the line.
} LOCALE_INFO;

Note The Locale info is only available along with LINEDEVCAPS_DEV_SPECIFIC_DATA if extension
version 6.0 (0x00060000) or higher is negotiated.

C
typedef struct PartitionInfo
{

DWORD PartitionOffset;
DWORD PartitionSize; //This will have the partition info of the line.
} PARTITION_INFO;

Note Both the Locale and Partition Info is available along with LINEDEVCAPS_DEV_SPECIFIC_DATA if
extension version 6.1 (0x00060001) or higher is negotiated.

Parameters

DWORD m_DevSpecificFlags

A bit array that identifies device specific properties for the line. The bits definition follows:

LINEDEVCAPSDEVSPECIFIC_PARKDN (0x00000001)—Indicates whether this line is a Call
Park DN.
4-3
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Note This extension is only available if extension version 3.0 (0x00030000) or higher is negotiated.

DWORD Locale

This identifies the locale information for the device. The typical values could be:

enum
{
ENGLISH_UNITED_STATES = 1,
FRENCH_FRANCE = 2,
GERMAN_GERMANY = 3,
RUSSIAN_RUSSIA = 5,
SPANISH_SPAIN = 6,
ITALIAN_ITALY = 7,
DUTCH_NETHERLAND = 8,
NORWEGIAN_NORWAY = 9,
PORTUGUESE_PORTUGAL = 10,
SWEDISH_SWEDEN = 11,
DANISH_DENMARK = 12,
JAPANESE_JAPAN = 13,
HUNGARIAN_HUNGARY = 14,
POLISH_POLAND = 15,
GREEK_GREECE = 16,
TRADITIONAL_CHINESE_CHINA = 19,
SIMPLIFIED_CHINESE_CHINA = 20,
KOREAN_KOREA = 21
}

LINECALLINFO Device Specific Extensions

Description

The TSP_Unicode_Party_names structure and SRTP info structure describes the device specific
extensions that have been made to the LINECALLINFO structure by the Cisco Unified TSP.
DSCPValueForAudioCalls will contain the DSCP value sent by CTI in the StartTransmissionEvent.

ExtendedCallInfo structure will have extra call information. For this release ExtendedCallReason field
will be part of the ExtendedCallInfo structure.

Detail

DWORD TapiCallerPartyUnicodeNameOffset;
DWORD TapiCallerPartyUnicodeNameSize;
DWORDTapiCallerPartyLocale;

DWORD TapiCalledPartyUnicodeNameOffset;
DWORD TapiCalledPartyUnicodeNameSize;
DWORDTapiCalledPartyLocale;

DWORD TapiConnectedPartyUnicodeNameOffset;
DWORD TapiConnectedPartyUnicodeNameSize;
DWORDTapiConnectedPartyLocale;

DWORD TapiRedirectionPartyUnicodeNameOffset;
DWORD TapiRedirectionPartyUnicodeNameSize;
DWORDTapiRedirectionPartyLocale;
4-4
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
DWORD TapiRedirectingPartyUnicodeNameOffset;
DWORD TapiRedirectingPartyUnicodeNameSize;
DWORDTapiRedirectingPartyLocale;

DWORD SRTPKeyInfoStructureOffset; // offset from base of LINECALLINFO
DWORD SRTPKeyInfoStructureSize;// includes variable length data total size
DWORD SRTPKeyInfoStructureElementCount;
DWORD SRTPKeyInfoStructureElementFixedSize;
DWORD DSCPValueInformationOffset;
DWORD DSCPValueInformationSize;
DWORD DSCPValueInformationElementCount;
DWORD DSCPValueInformationElementFixedSize;
DWORD PartitionInformationOffset; // offset from base of LINECALLINFO
DWORD PartitionInformationSize; // includes variable length data total size
DWORD PartitionInformationElementCount;
DWORD PartitionInformationElementFixedSize;
DWORD ExtendedCallInfoOffset;
DWORD ExtendedCallInfoSize;
DWORD ExtendedCallInfoElementCount;
DWORD ExtendedCallInfoElementSize;

typedef struct SRTPKeyInfoStructure
{

SRTPKeyInformation TransmissionSRTPInfo;
SRTPKeyInformation ReceptionSRTPInfo;

} SRTPKeyInfoStructure;

typedef struct SRTPKeyInformation
{

DWORD IsSRTPDataAvailable;
DWORD SecureMediaIndicator;// CiscoSecurityIndicator
DWORD MasterKeyOffset;
DWORD MasterKeySize;
DWORD MasterSaltOffset;
DWORD MasterSaltSize;
DWORD AlgorithmID; // CiscoSRTPAlgorithmIDs
DWORD IsMKIPresent;
DWORD KeyDerivationRate;

} SRTPKeyInformation;

enum CiscoSRTPAlgorithmIDs
{

SRTP_NO_ENCRYPTION=0,
SRTP_AES_128_COUNTER=1

};

enum CiscoSecurityIndicator
{
 SRTP_MEDIA_ENCRYPT_KEYS_AVAILABLE,
 SRTP_MEDIA_ENCRYPT_USER_NOT_AUTH,
 SRTP_MEDIA_ENCRYPT_KEYS_UNAVAILABLE,
 SRTP_MEDIA_NOT_ENCRYPTED
};

If isSRTPInfoavailable is set to false, the rest of the information from SRTPKeyInformation should be
ignored.

If MasterKeySize or MasterSlatSize is set to 0, then the corresponding MasterKeyOffset or
MasterSaltOffset should be ignored.

typedef struct DSCPValueInformation
{
DWORD DSCPValueForAudioCalls;
}

4-5
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
typedef struct PartitionInformation
{

DWORD CallerIDPartitionOffset;
DWORD CallerIDPartitionSize;
DWORD CalledIDPartitionOffset;
DWORD CalledIDPartitionSize;
DWORD ConnecetedIDPartitionOffset;
DWORD ConnecetedIDPartitionSize;
DWORD RedirectionIDPartitionOffset;
DWORD RedirectionIDPartitionSize;
DWORD RedirectingIDPartitionOffset;
DWORD RedirectingIDPartitionSize;

} PartitionInformation;

Struct ExtendedCallInfo
{

DWORD ExtendedCallReason ;
DWORD CallerIDURLOffset;// CallPartySipURLInfo
DWORD CallerIDURISize;
DWORD CalledIDURLOffset;// CallPartySipURLInfo
DWORD CalledIDURISize;
DWORD ConnectedIDURIOffset;// CallPartySipURLInfo
DWORD ConnectedIDURISize;
DWORD RedirectionIDURIOffset;// CallPartySipURLInfo
DWORD RedirectionIDURISize;
DWORD RedirectingIDURIOffset;// CallPartySipURLInfo
DWORD RedirectingIDURISize;

}

Struct CallPartySipURLInfo
{

DWORD dwUserOffset; //sip user string
DWORD dwUserSize;
DWORD dwHostOffset; //host name string
DWORD dwHostSize;
DWORD dwPort; // integer port number
DWORD dwTransportType; // SIP_TRANS_TYPE
DWORD dwURLType;// SIP_URL_TYPE

}

enum {
 CTI_SIP_TRANSPORT_TCP=1,
 CTI_SIP_TRANSPORT_UDP,
 CTI_SIP_TRANSPORT_TLS
} SIP_TRANS_TYPE;

enum {
 CTI_NO_URL = 0,
 CTI_SIP_URL,
 CTI_TEL_URL
} SIP_URL_TYPE;
4-6
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Parameters

Parameter Value

TapiCallerPartyUnicodeNameOffset
TapiCallerPartyUnicodeNameSize

The size, in bytes, of the variably sized field containing
the Unicode Caller party identifier name information, and
the offset, in bytes, from the beginning of the
LINECALLINFO data structure.

TapiCallerPartyLocale Contains the Unicode Caller party identifier name Locale
information

TapiCalledPartyUnicodeNameOffset
TapiCalledPartyUnicodeNameSize

The size, in bytes, of the variably sized field containing
the Unicode Called party identifier name information,
and the offset, in bytes, from the beginning of the
LINECALLINFO data structure.

TapiCalledPartyLocale Contains the Unicode Called party identifier name Locale
information

TapiConnectedPartyUnicodeNameOffset
TapiConnectedPartyUnicodeNameSize

The size, in bytes, of the variably sized field containing
the Unicode Connected party identifier name
information, and the offset, in bytes, from the beginning
of the LINECALLINFO data structure.

TapiConnectedPartyLocale Contains the Unicode Connected party identifier name
Locale information

TapiRedirectionPartyUnicodeNameOffset
TapiRedirectionPartyUnicodeNameSize

The size, in bytes, of the variably sized field containing
the Unicode Redirection party identifier name
information, and the offset, in bytes, from the beginning
of the LINECALLINFO data structure.

TapiRedirectionPartyLocale Contains the Unicode Redirection party identifier name
Locale information

TapiRedirectingPartyUnicodeNameOffset
TapiRedirectingPartyUnicodeNameSize

The size, in bytes, of the variably sized field containing
the Unicode Redirecting party identifier name
information, and the offset, in bytes, from the beginning
of the LINECALLINFO data structure.

TapiRedirectingPartyLocale Contains the Unicode Redirecting party identifier name
Locale information

SRTPKeyInfoStructureOffset Point to SRTPKeyInfoStructure

SRTPKeyInfoStructureSize Total size of SRTP info

SRTPKeyInfoStructureElementCount Number of SRTPKeyInfoStructure element

SRTPKeyInfoStructureElementFixedSize Fixed size of SRTPKeyInfoStructure

SecureMediaIndicator Indicates whether media is secure and whether
application is authorized for key information

MasterKeyOffset
MasterKeySize

Contains the offset and size of SRTP MasterKey
information

MasterSaltOffset
MasterSaltSize

Contains the offset and size of SRTP MasterSaltKey
information

AlgorithmID Specifies negotiated SRTP algorithm ID

IsMKIPresent Indicates whether MKI is present.
4-7
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
KeyDerivationRate Provides the KeyDerivationRate.

DSCPValueForAudioCalls Contains the DSCP value for Audio Calls.

CallerIDPartitionOffset
CallerIDPartitionSize

The size, in bytes, of the variably sized field containing
the Caller party identifier Partition information, and the
offset, in bytes, from the beginning of LINECALLINFO
data structure.

CalledIDPartitionOffset
CalledIDPartitionSize

The size, in bytes, of the variably sized field containing
the Called party identifier Partition information, and the
offset, in bytes, from the beginning of LINECALLINFO
data structure.

ConnectedIDPartitionOffset
ConnecetedIDPartitionSize

The size, in bytes, of the variably sized field containing
the Connected party identifier Partition information, and
the offset, in bytes, from the beginning of
LINECALLINFO data structure.

RedirectionIDPartitionOffset
RedirectionIDPartitionSize

The size, in bytes, of the variably sized field containing
the Redirection party identifier Partition information, and
the offset, in bytes, from the beginning of
LINECALLINFO data structure.

RedirectingIDPartitionOffset
RedirectingIDPartitionSize

The size, in bytes, of the variably sized field containing
the Redirecting party identifier Partition information, and
the offset, in bytes, from the beginning of
LINECALLINFO data structure.

ExtendedCallReason Presents all the last feature related CTI Call reason code
to application as an extension to the standard reason
codes that TAPI supports. This provides the feature
specific information per call. As SIPPhones are now
supported through CTI, new features can be introduced
for SIPPhones during releases. This field will not be
backward compatible and can change as changes or
additions are made in the SIPPhone support for a feature.
Applications should implement some default behavior to
handle any unknown reason codes that might be provided
through this field.

For Refer the reason code is CtiCallReason_Refer.

For Replaces the reason code is CtiCallReason_Replaces.

CallerIDURLOffset
CallerIDURLSize

The size, in bytes, of the variably sized field containing
the Caller party identifier URL information, and the
offset, in bytes, from the beginning of LINECALLINFO
data structure.

CalledIDURLOffset
CalledIDURLSize

The size, in bytes, of the variably sized field containing
the Called party identifier URL information, and the
offset, in bytes, from the beginning of LINECALLINFO
data structure.

Parameter Value
4-8
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Note To indicate there is partition Information in the LINECALLINFO structure, a
LINECALLINFOSTATE_DEVSPECIFIC will be fired.

Also, whenever there is a change in the partition information, a LINEDEVSPECIFIC event will be fired
indicating which exact field in the devSpecific portion of the LINECALLINFO has changed as shown
below. This event if fired only if the application has negotiated 7.0 extension version or higher.

LINEDEVSPECIFIC
{
 hDevice = hcall //call handle for which the info has changed.

dwParam1 = SLDSMT_LINECALLINFO_DEVSPECIFICDATA //indicates DevSpecific portion’s changed
 dwParam2 = SLDST_SRTP_INFO|SLDST_QOS_INFO|SLDST_PARTITION_INFO|SLDST_EXTENDED_CALL_INFO
 dwParam3 = …
 dwParam3 will be security indicator if dwParam2 has bit set for SLDST_SRTP_INFO
}

SLDST_SRTP_INFO = 0x00000001
SLDST_QOS_INFO = 0x00000002
SLDST_PARTITION_INFO = 0x00000004
SLDST_EXTENDED_CALL_INFO= 0x00000008

LINEDEVSTATUS Device Specific Extensions

Description

The LINEDEVSTATUS_DEV_SPECIFIC_DATA structure describes the device specific extensions that
have been made to the LINEDEVSTATUS structure by the Cisco Unified TSP.

Detail

typedef struct devSpecific_SupportedEncoding
{
 DWORD dwSupportedEncoding;
LPCSTR lpszAlternateScript;
}LINEDEVSTATUS_DEV_SPECIFIC_DATA;

Note This extension is only available if extension version 0x00060000 or higher is negotiated.

ConnectedIDURLOffset
ConnecetedIDURLSize

The size, in bytes, of the variably sized field containing
the Connected party identifier URL information, and the
offset, in bytes, from the beginning of LINECALLINFO
data structure.

RedirectionIDURLOffset
RedirectionIDURLSize

The size, in bytes, of the variably sized field containing
the Redirection party identifier URL information, and the
offset, in bytes, from the beginning of LINECALLINFO
data structure.

RedirectingIDURLOffset
RedirectingIDURLSize

The size, in bytes, of the variably sized field containing
the Redirecting party identifier URL information, and the
offset, in bytes, from the beginning of LINECALLINFO
data structure.

Parameter Value
4-9
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Parameters

DWORD dwSupportEncoding

This indicates the Support Encoding for the Unicode Party names being sent in device specfic
extension of the LINECALLINFO structure.

The typical values could be:

enum {
UnknownEncoding = 0,// Unknown encoding
NotApplicableEncoding = 1,// Encoding not applicable to this device
AsciiEncoding = 2, // ASCII encoding
Ucs2UnicodeEncoding = 3 // UCS-2 Unicode encoding
}

LPCSTR lpszAlternateScript

This parameter specifies the alternate script supported by the device. An empty string indicates the
device does not support or is not configured with an alternate script.

The only supported script in this release is "Kanji" for the Japanese locale.

CCiscoLineDevSpecific
CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificMsgWaiting
|
+-- CCiscoLineDevSpecificMsgWaitingDirn
|
+-- CCiscoLineDevSpecificUserControlRTPStream
|
+--CciscoLineDevSpecificSetStatusMsgs
|
+--CCiscoLineDevSpecificRedirectResetOrigCalled
|
+--CCiscoLineDevSpecificPortRegistrationPerCall
|
+--CciscoLineDevSpecificSetRTPParamsForCall
|
+--CCiscoLineDevSpecificRedirectSetOrigCalled
|
+--CCiscoLineDevSpecificJoin
|
+--CciscoLineDevSpecificUserSetSRTPAlgorithmID
|
+--CCiscoLineDevSpecificAcquire
|
+--CciscoLineDevSpecificDeacquire
|
+-- CciscoLineDevSpecificSendLineOpen

Description

This section provides information on how to perform Cisco Unified TAPI specific functions with the
CCiscoLineDevSpecific class, which represents the parent class to all the following classes. It comprises
a virtual class and is provided here for informational purposes.
4-10
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Header File

The file CiscoLineDevSpecific.h contains the constant, structure, and class definition for the Cisco line
device-specific classes.

Class Detail

class CCiscoLineDevSpecific
 {
 public:

CCicsoLineDevSpecific(DWORD msgType);
virtual ~CCiscoLineDevSpecific();

 DWORD GetMsgType(void) const {return m_MsgType;}
 void* lpParams() {return &m_MsgType;}
 virtual DWORD dwSize() = 0;
 private:
 DWORD m_MsgType;
 };

Functions

lpParms()

Function can be used to obtain the pointer to the parameter block.

dwSize()

Function will give the size of the parameter block area.

Parameter

m_MsgType

Specifies the type of message.

Subclasses

Each subclass of CCiscoLineDevSpecific has a different value assigned to the parameter m_MsgType.
If you are using C instead of C++, this is the first parameter in the structure.

Enumeration

The CiscoLineDevSpecificType enumeration provides valid message identifiers.

enum CiscoLineDevSpecificType {
SLDST_MSG_WAITING = 1,
SLDST_MSG_WAITING_DIRN,
SLDST_USER_CRTL_OF_RTP_STREAM,
SLDST_SET_STATUS_MESSAGES,
SLDST_NUM_TYPE,
SLDST_SWAP_HOLD_SETUP_TRANSFER, // Not Supported in Cisco TSP 3.4 and Beyond
SLDST_REDIRECT_RESET_ORIG_CALLED,
SLDST_USER_RECEIVE_RTP_INFO,
SLDST_USER_SET_RTP_INFO,
SLDST_JOIN,
SLDST_USER_SET_SRTP_ALGORITHM_ID,
SLDST_SEND_LINE_OPEN,

};
4-11
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Message Waiting
CCiscoLineDevSpecific

|
+-- CCiscoLineDevSpecificMsgWaiting

Description

The CCiscoLineDevSpecificMsgWaiting class turns the message waiting lamp on or off for the line that
the hLine parameter specifies.

Note This extension does not require an extension version to be negotiated.

Class Detail

class CCiscoLineDevSpecificMsgWaiting : public CCiscoLineDevSpecific
{
 public:
 CCiscoLineDevSpecificMsgWaiting() : CCiscoLineDevSpecific(SLDST_MSG_WAITING){}
 virtual ~CCiscoLineDevSpecificMsgWaiting() {}
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 DWORD m_BlinkRate;
};

Parameters

DWORD m_MsgType

Equals SLDST_MSG_WAITING.

DWORD m_BlinkRate

Any supported PHONELAMPMODE_ constants that are specified in the phoneSetLamp() function.

Note Only PHONELAMPMODE_OFF and PHONELAMPMODE_STEADY are supported on Cisco 79xx
IP Phones.
4-12
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Message Waiting Dirn
CCiscoLineDevSpecific

|
+-- CCiscoLineDevSpecificMsgWaitingDirn

Description

The CCiscoLineDevSpecificMsgWaitingDirn class turns the message waiting lamp on or off for the line
that a parameter specifies and is independent of the hLine parameter.

Note This extension does not require an extension version to be negotiated.

Class Detail
class CCiscoLineDevSpecificMsgWaitingDirn : public CCiscoLineDevSpecific
{
 public:
 CCiscoLineDevSpecificMsgWaitingDirn() :
 CCiscoLineDevSpecific(SLDST_MSG_WAITING_DIRN) {}
 virtual ~CCiscoLineDevSpecificMsgWaitingDirn() {}
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 DWORD m_BlinkRate;
 char m_Dirn[25];
};

Parameters

DWORD m_MsgType

Equals SLDST_MSG_WAITING_DIRN.

DWORD m_BlinkRate

As in the CCiscoLineDevSpecificMsgWaiting message.

Note Only PHONELAMPMODE_OFF and PHONELAMPMODE_STEADY are supported on Cisco 79xx
IP Phones.

char m_Dirn[25]

The directory number for which the message waiting lamp should be set.
4-13
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Audio Stream Control
CCiscoLineDevSpecific

|
+-- CCiscoLineDevSpecificUserControlRTPStream

Description

The CCiscoLineDevSpecificUserControlRTPStream class controls the audio stream of a line. To use this
class, the lineNegotiateExtVersion API must be called before opening the line. When
lineNegotiateExtVersion is called, the highest bit must be set on both the dwExtLowVersion and
dwExtHighVersion parameters. This causes the call to lineOpen to behave differently. The line does not
actually open, but waits for a lineDevSpecific call to complete the open with more information. The
CCiscoLineDevSpecificUserControlRTPStream class provides the extra information that is required.

Procedure

Step 1 Call lineNegotiateExtVersion for the deviceID of the line that is to be opened (OR 0x80000000 with the
dwExtLowVersion and dwExtHighVersion parameters).

Step 2 Call lineOpen for the deviceID of the line that is to be opened.

Step 3 Call lineDevSpecific with a CCiscoLineDevSpecificUserControlRTPStream message in the lpParams
parameter.

Class Detail
class CCiscoLineDevSpecificUserControlRTPStream : public CCiscoLineDevSpecific
 {

public:
 CCiscoLineDevSpecificUserControlRTPStream() :
 CCiscoLineDevSpecific(SLDST_USER_CRTL_OF_RTP_STREAM),
 m_ReceiveIP(-1),
 m_ReceivePort(-1),
 m_NumAffectedDevices(0)
 {
 memset(m_AffectedDeviceID, 0, sizeof(m_AffectedDeviceID));
 }
 virtual ~CCiscoLineDevSpecificUserControlRTPStream() {}
 DWORD m_ReceiveIP; // UDP audio reception IP
 DWORD m_ReceivePort; // UDP audio reception port
 DWORD m_NumAffectedDevices;
 DWORD m_AffectedDeviceID[10];

DWORD m_MediaCapCount;
MEDIA_CAPS m_MediaCaps;

 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 };

Parameters

DWORD m_MsgType

Equals SLDST_USER_CRTL_OF_RTP_STREAM

DWORD m_ReceiveIP:

The RTP audio reception IP address in network byte order
4-14
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
DWORD m_ReceivePort:

The RTP audio reception port in network byte order

DWORD m_NumAffectedDevices:

The TSP returns this value. It contains the number of deviceIDs in the m_AffectedDeviceID array
that are valid. Any device with multiple directory numbers that are assigned to it will have multiple
TAPI lines, one per directory number.

DWORD m_AffectedDeviceID[10]:

The TSP returns this value. It contains the list of deviceIDs for any device that is affected by this
call. Do not call lineDevSpecific for any other device in this list.

DWORD m_mediaCapCount

The number of codecs that are supported for this line.

MEDIA_CAPS m_MediaCaps -

A data structure with the following format:

typedef struct {

DWORD MediaPayload;

DWORD MaxFramesPerPacket;

DWORD G723BitRate;

} MEDIA_CAPS[MAX_MEDIA_CAPS_PER_DEVICE];

This data structure defines each codec that is supported on a line. The limit specifies 18. The
following description shows each member in the MEDIA_CAPS data structure:

MediaPayload specifies an enumerated integer that contains one of the following values:

enum
 {
Media_Payload_G711Alaw64k = 2,
Media_Payload_G711Alaw56k = 3, // "restricted"
Media_Payload_G711Ulaw64k = 4,
Media_Payload_G711Ulaw56k = 5, // "restricted"
Media_Payload_G722_64k = 6,
Media_Payload_G722_56k = 7,
Media_Payload_G722_48k = 8,
Media_Payload_G7231 = 9,
Media_Payload_G728 = 10,
Media_Payload_G729 = 11,
Media_Payload_G729AnnexA = 12,
Media_Payload_G729AnnexB = 15,
Media_Payload_G729AnnexAwAnnexB = 16,
Media_Payload_GSM_Full_Rate = 18,
Media_Payload_GSM_Half_Rate = 19,
Media_Payload_GSM_Enhanced_Full_Rate = 20,
Media_Payload_Wide_Band_256k = 25,
Media_Payload_Data64 = 32,
Media_Payload_Data56 = 33,
Media_Payload_GSM = 80,
Media_Payload_G726_32K = 82,
Media_Payload_G726_24K = 83,
Media_Payload_G726_16K = 84,
// Media_Payload_G729_B = 85,
// Media_Payload_G729_B_LOW_COMPLEXITY = 86,
} Media_PayloadType;
4-15
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Read MaxFramesPerPacket as MaxPacketSize. It specifies a 16-bit integer that indicates the
maximum desired RTP packet size in milliseconds. Typically, this value is set to 20.

G723BitRate specifies a 6-byte field that contains either the G.723.1 information bit rate or is
ignored. The following list provides values for the G.723.1 field are values.

enum
 {
 Media_G723BRate_5_3 = 1, //5.3Kbps
 Media_G723BRate_6_4 = 2 //6.4Kbps
 } Media_G723BitRate;

Set Status Messages
CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificSetStatusMsgs

Description

The CCiscoLineDevSpecificSetStatusMsgs class is used to turn on or off the status messages for the line
specified by the hLine parameter. The Cisco Unified TSP supports the following flags:

• DEVSPECIFIC_MEDIA_STREAM—Setting this flag on a line turns on the reporting of media
streaming messages for that line. Clearing this flag will turn off the reporting of media streaming
messages for that line.

• DEVSPECIFIC_CALL_TONE_CHANGED—Setting this flag on a line turns on the reporting of
call tone changed events for that line. Clearing this flag will turn off the reporting of call tone
changed events for that line.

Note This extension only applies if extension version 0x00020001 or higher is negotiated.

Class Detail
class CCiscoLineDevSpecificSetStatusMsgs : public CCiscoLineDevSpecific
{
public:
CCiscoLineDevSpecificSetStatusMsgs() :
CCiscoLineDevSpecific(SLDST_SET_STATUS_MESSAGES) {}
virtual ~CCiscoLineDevSpecificSetStatusMsgs() {}
DWORD m_DevSpecificStatusMsgsFlag;
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
};

Parameters

DWORD m_MsgType

Equals SLDST_SET_STATUS_MESSAGES.

DWORD m_DevSpecificStatusMsgsFlag

Identifies which status changes cause a LINE_DEVSPECIFIC message to be sent to the application.

The supported values are as follows:

#define DEVSPECIFIC_MEDIA_STREAM 0x00000001
#define DEVSPECIFIC_CALL_TONE_CHANGED 0x00000002
4-16
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Swap-Hold/SetupTransfer

Note This is not supported in Cisco Unified TSP 4.0 and beyond.

The CCiscoLineDevSpecificSwapHoldSetupTransfer class was used to perform a SetupTransfer
between a call that is in CONNECTED state and a call that is in the ONHOLD state. This function would
change the state of the connected call to ONHOLDPENDTRANSFER state and the ONHOLD call to
CONNECTED state. This would then allow a CompleteTransfer to be performed on the two calls. In
Cisco Unified TSP 4.0 and beyond, the TSP allows applications to use lineCompleteTransfer() to
transfer the calls without having to use the CCiscoLineDevSpecificSwapHoldSetupTransfer function.
Therefore, this function returns LINEERR_OPERATIONUNAVAIL in Cisco Unified TSP 4.0 and
beyond.

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificSwapHoldSetupTransfer

Description

The CCiscoLineDevSpecificSwapHoldSetupTransfer class performs a setupTransfer between a call that
is in CONNECTED state and a call that in ONHOLD state. This function will change the state of the
connected call to ONHOLDPENDTRANSFER state and the ONHOLD call to CONNECTED state. This
will then allow a completeTransfer to be performed on the two calls.

Note This extension only applies if extension version 0x00020002 or higher is negotiated.

Class Details

class CCiscoLineDevSpecificSwapHoldSetupTransfer : public CCiscoLineDevSpecific
 {
 public:
 CCiscoLineDevSpecificSwapHoldSetupTransfer() :
CCiscoLineDevSpecific(SLDST_SWAP_HOLD_SETUP_TRANSFER) {}
 virtual ~CCiscoLineDevSpecificSwapHoldSetupTransfer() {}
 DWORD heldCallID;
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;} // subtract out the
virtual function table pointer
 };

Parameters

DWORD m_MsgType

Equals SLDST_SWAP_HOLD_SETUP_TRANSFER.

DWORD heldCallID

Equals the callid of the held call that is returned in dwCallID of LPLINECALLINFO.

HCALL hCall (in lineDevSpecific parameter list)

Equals the handle of the connected call.
4-17
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Redirect Reset Original Called ID
CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificRedirectResetOrigCalled

Description

The CCiscoLineDevSpecificRedirectResetOrigCalled class redirects a call to another party while
resetting the original called ID of the call to the destination of the redirect.

Note This extension only applies if extension version 0x00020003 or higher is negotiated.

Class Details
class CCiscoLineDevSpecificRedirectResetOrigCalled: public CCiscoLineDevSpecific
 {
 public:
 CCiscoLineDevSpecificRedirectResetOrigCalled:
CCiscoLineDevSpecific(SLDST_REDIRECT_RESET_ORIG_CALLED) {}
 virtual ~CCiscoLineDevSpecificRedirectResetOrigCalled{}
 char m_DestDirn[25]; //redirect destination address
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;} // subtract out the
virtual function table pointer
 };

Parameters

DWORD m_MsgType

Equals SLDST_REDIRECT_RESET_ORIG_CALLED.

DWORD m_DestDirn

Equals the destination address where the call needs to be redirected.

HCALL hCall (In lineDevSpecific parameter list)

Equals the handle of the connected call.

Port Registration per Call
CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificPortRegistrationPerCall

Description

The CCiscoLineDevSpecificPortRegistrationPerCall class registers the CTI Port for the RTP parameters
on a per call basis. With this request, the application receives the new lineDevSpecific event requesting
that it needs to set the RTP parameters for the call.

To use this class, the lineNegotiateExtVersion API must be called before opening the line. When calling
lineNegotiateExtVersion, the highest bit must be set on both the dwExtLowVersion and
dwExtHighVersion parameters.
4-18
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
This causes the call to lineOpen to behave differently. The line is not actually opened, but waits for a
lineDevSpecific call to complete the open with more information. The extra information required is
provided in the CciscoLineDevSpecificPortRegistrationPerCall class.

Procedure

Step 1 Call lineNegotiateExtVersion for the deviceID of the line to be opened (or 0x80000000 with the
dwExtLowVersion and dwExtHighVersion parameters)

Step 2 Call lineOpen for the deviceID of the line to be opened.

Step 3 Call lineDevSpecific with a CciscoLineDevSpecificPortRegistrationPerCall message in the lpParams
parameter.

Note This extension is only available if the extension version 0x00040000 or higher gets negotiated.

Class Details
class CCiscoLineDevSpecificPortRegistrationPerCall: public CCiscoLineDevSpecific
{
public:

CCiscoLineDevSpecificPortRegistrationPerCall () :
CCiscoLineDevSpecific(SLDST_USER_RECEIVE_RTP_INFO),
m_RecieveIP(-1), m_RecievePort(-1), m_NumAffectedDevices(0)
{
memset((char*)m_AffectedDeviceID, 0, sizeof(m_AffectedDeviceID));
}

virtual ~ CCiscoLineDevSpecificPortRegistrationPerCall () {}
DWORD m_NumAffectedDevices;
DWORD m_AffectedDeviceID[10];
DWORD m_MediaCapCount;
MEDIA_CAPSm_MediaCaps;
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}

// subtract out the virtual function table pointer
};

Parameters

DWORD m_MsgType

Equals SLDST_USER_RECEIVE_RTP_INFO

DWORD m_NumAffectedDevices:

This value is returned by the TSP. It contains the number of deviceIDs in the m_AffectedDeviceID
array which are valid. Any device with multiple directory numbers assigned to it will have multiple
TAPI lines, one per directory number.

DWORD m_AffectedDeviceID[10]:

This value is returned by the TSP. It contains the list of deviceIDs for any device affected by this
call. Do not call lineDevSpecific for any other device in this list.

DWORD m_mediaCapCount

The number of codecs supported for this line.
4-19
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
MEDIA_CAPS m_MediaCaps -

A data structure with the following format:

typedef struct {
DWORD MediaPayload;
DWORD MaxFramesPerPacket;
DWORD G723BitRate;
} MEDIA_CAPS[MAX_MEDIA_CAPS_PER_DEVICE];

This data structure defines each codec supported on a line. The limit is 18. The following is a
description for each member in the MEDIA_CAPS data structure:

MediaPayload is an enumerated integer containing one of the following values.

enum
{
Media_Payload_G711Alaw64k = 2,
Media_Payload_G711Alaw56k = 3, // "restricted"
Media_Payload_G711Ulaw64k = 4,
Media_Payload_G711Ulaw56k = 5, // "restricted"
Media_Payload_G722_64k = 6,
Media_Payload_G722_56k = 7,
Media_Payload_G722_48k = 8,
Media_Payload_G7231 = 9,
Media_Payload_G728 = 10,
Media_Payload_G729 = 11,
Media_Payload_G729AnnexA = 12,
Media_Payload_G729AnnexB = 15,
Media_Payload_G729AnnexAwAnnexB = 16,
Media_Payload_GSM_Full_Rate = 18,
Media_Payload_GSM_Half_Rate = 19,
Media_Payload_GSM_Enhanced_Full_Rate = 20,
Media_Payload_Wide_Band_256k = 25,
Media_Payload_Data64 = 32,
Media_Payload_Data56 = 33,
Media_Payload_GSM = 80,
Media_Payload_G726_32K = 82,
Media_Payload_G726_24K = 83,
Media_Payload_G726_16K = 84,
// Media_Payload_G729_B = 85,
// Media_Payload_G729_B_LOW_COMPLEXITY = 86,
} Media_PayloadType;

MaxFramesPerPacket should read as MaxPacketSize and is a 16 bit integer specified in
milliseconds. It indicates the RTP packet size. Typically, this value is set to 20.

G723BitRate is a six byte field which contains either the G.723.1 information bit rate or is
ignored. The values for the G.723.1 field are values enumerated as follows.

enum
{
Media_G723BRate_5_3 = 1, //5.3Kbps
Media_G723BRate_6_4 = 2 //6.4Kbps
} Media_G723BitRate;
4-20
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Setting RTP Parameters for Call
CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificSetRTPParamsForCall

Description

The CCiscoLineDevSpecificSetRTPParamsForCall class sets the RTP parameters for a specific call.

Note This extension only applies if extension version 0x00040000 or higher gets negotiated.

Class Details

class CciscoLineDevSpecificSetRTPParamsForCall: public CCiscoLineDevSpecific
{
public:

CciscoLineDevSpecificSetRTPParamsForCall () :
CCiscoLineDevSpecific(SLDST_USER_SET_RTP_INFO) {}

virtual ~ CciscoLineDevSpecificSetRTPParamsForCall () {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
// subtract out the virtual function table pointer
DWORD m_RecieveIP; // UDP audio reception IP
DWORD m_RecievePort; // UDP audio reception port

 };

Parameters

DWORD m_MsgType

Equals SLDST_USER_SET_RTP_INFO

DWORD m_ReceiveIP

This is the RTP audio reception IP address in the network byte order to set for the call.

DWORD m_ReceivePort

This is the RTP audio reception port in the network byte order to set for the call.
4-21
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Redirect Set Original Called ID
CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificRedirectSetOrigCalled

Description

The CCiscoLineDevSpecificRedirectSetOrigCalled class redirects a call to another party while setting
the original called ID of the call to any other party.

Note This extension only applies if extension version 0x00040000 or higher gets negotiated.

Class Details

class CCiscoLineDevSpecificRedirectSetOrigCalled: public CCiscoLineDevSpecific
{
public:
 CCiscoLineDevSpecificRedirectSetOrigCalled () :
CCiscoLineDevSpecific(SLDST_REDIRECT_SET_ORIG_CALLED) {}
 virtual ~ CCiscoLineDevSpecificRedirectSetOrigCalled () {}
 char m_DestDirn[25];
 char m_SetOriginalCalledTo[25];
 // subtract virtual function table pointer
 virtual DWORD dwSize(void) const {return (sizeof (*this) - 4) ;
}

Parameters

DWORD m_MsgType

Equals SLDST_REDIRECT_SET_ORIG_CALLED

char m_DestDirn[25]

Indicates the destination of the redirect. If this request is being used to transfer to voice mail, then
set this field to the voice mail pilot number of the DN of the line whose voice mail you want to
transfer to.

char m_SetOriginalCalledTo[25]

Indicates the DN to which the OriginalCalledParty needs to be set to. If this request is being used to
transfer to voice mail, then set this field to the DN of the line whose voice mail you want to transfer
to.

HCALL hCall (in lineDevSpecific parameter list)

Equals the handle of the connected call.
4-22
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Join
CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificJoin

Description

The CCiscoLineDevSpecificJoin class joins two or more calls into one conference call. Each of the calls
being joined can either be in the ONHOLD or the CONNECTED call state.

The Cisco Unified CallManager may succeed in joining some of the calls specified in the Join request,
but not all. In this case, the Join request will succeed and the Cisco Unified CallManager attempts to join
as many calls as possible.

Note This extension only applies if extension version 0x00040000 or higher gets negotiated.

Class Details

class CCiscoLineDevSpecificJoin : public CCiscoLineDevSpecific
{
 public:
 CCiscoLineDevSpecificJoin () : CCiscoLineDevSpecific(SLDST_JOIN) {}
 virtual ~ CCiscoLineDevSpecificJoin () {}
 DWORD m_CallIDsToJoinCount;
 CALLIDS_TO_JOIN m_CallIDsToJoin;
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 // subtract out the virtual function table pointer
};

Parameters

DWORD m_MsgType

equals SLDST_JOIN

DWORD m_CallIDsToJoinCount

The number of callIDs contained in the m_CallIDsToJoin parameter.

CALLIDS_TO_JOIN m_CallIDsToJoin

A data structure that contains an array of dwCallIDs to join with the following format:

typedef struct {
 DWORD CallID; // dwCallID to Join
} CALLIDS_TO_JOIN[MAX_CALLIDS_TO_JOIN];

where MAX_CALLIDS_TO_JOIN is defined as:

const DWORD MAX_CALLIDS_TO_JOIN = 14;

HCALL hCall (in LineDevSpecific parameter list)

equals the handle of the call that is being joined with callIDsToJoin to create the conference.
4-23
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Set User SRTP Algorithm IDs
CCiscoLineDevSpecific
|
+-- CciscoLineDevSpecificUserSetSRTPAlgorithmID

Description

The CciscoLineDevSpecificUserSetSRTPAlgorithmID class is used to allow applications to set SRTP
algorithm IDs. To use this class, the lineNegotiateExtVersion API must be called before opening the line.
When calling lineNegotiateExtVersion the highest bit or second highest bit must be set on both the
dwExtLowVersion and dwExtHighVersion parameters. This causes the call to lineOpen to behave
differently. The line is not actually opened, but waits for a lineDevSpecific call to complete the open
with more information. The extra information required is provided in the
CciscoLineDevSpecificUserSetSRTPAlgorithmID class.

Note This extension is only available if extension version 0x80070000, 0x4007000 or higher is negotiated.

Procedure

Step 1 Call lineNegotiateExtVersion for the deviceID of the line to be opened. (0x80070000 or 0x4007000 with
the dwExtLowVersion and dwExtHighVersion parameters)

Step 2 Call lineOpen for the deviceID of the line to be opened.

Step 3 Call lineDevSpecific with a CciscoLineDevSpecificUserSetSRTPAlgorithmID message in the lpParams
parameter to specify SRTP algorithm ids.

Step 4 Call lineDevSpecific with either CciscoLineDevSpecificPortRegistrationPerCall or
CCiscoLineDevSpecificUserControlRTPStream message in the lpParams parameter.

Class Detail

class CciscoLineDevSpecificUserSetSRTPAlgorithmID: public CCiscoLineDevSpecific
{
 public:
 CciscoLineDevSpecificUserSetSRTPAlgorithmID () :
 CCiscoLineDevSpecific(SLDST_USER_SET_SRTP_ALGORITHM_ID),
 m_SRTPAlgorithmCount(0),

m_SRTP_Fixed_Element_Size(4)
{
}

 virtual ~ CciscoLineDevSpecificUserSetSRTPAlgorithmID () {}
 DWORD m_SRTPAlgorithmCount; //Maximum is MAX_CISCO_SRTP_ALGORITHM_IDS

DWORD m_SRTP_Fixed_Element_Size;//Should be size of DWORD, it should be always 4.
 DWORD m_SRTPAlgorithm_Offset; //offset from beginning of the message buffer
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;} // subtract out the virtual
function table pointer
};
4-24
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Supported Algorithm Constants

enum CiscoSRTPAlgorithmIDs
{

SRTP_NO_ENCRYPTION=0,
SRTP_AES_128_COUNTER=1

};

Parameters

DWORD m_MsgType

Equals SLDST_USER_SET_SRTP_ALGORITHM_ID

DWORD m_SRTPAlgorithmCount

This numbers of algorithm Ids specified in this message.

DWORD m_SRTP_Fixed_Element_Size

Should be size of DWORD, it should be always 4.

DWORD m_SRTPAlgorithm_Offset

Offset from the beginning of the message buffer. This is offset where you start put algorithm id array.

Note dwSize should be recalculated based on size of the structure, m_SRTPAlgorithmCount and
m_SRTP_Fixed_Element_Size.

Explicit Acquire
CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificAcquire

Description

The CCiscoLineDevSpecificAcquire class is used to explicitly acquire any CTI controllable device.

If an Superprovider app needs to open any CTI Controllable device on the Unified CM system. The app
should explicitly acquire that device using the above interface. After successful response, it can open the
device as usual.

Note This extension is only available if extension version 0x00070000 or higher is negotiated.

Class Details
class CCiscoLineDevSpecificAcquire : public CCiscoLineDevSpecific
{
 public:
 CCiscoLineDevSpecificAcquire () : CCiscoLineDevSpecific(SLDST_ACQUIRE) {}
 virtual ~ CCiscoLineDevSpecificAcquire () {}
 char m_DeviceName[16];
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 // subtract out the virtual function table pointer
};
4-25
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Parameters

DWORD m_MsgType

Equals SLDST_ACQUIRE

char m_DeviceName[16]

The DeviceName that needs to be explicitly acquired.

Explicit De-Acquire
CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificDeacquire

Description

The CCiscoLineDevSpecificDeacquire class is used to explicitly de-acquire the explicitly acquired
device.

If an Superprovider app has explicitly acquired any CTI Controllable device on the Unified CM system,
then the app should explicitly De-acquire that device using the above interface.

Note This extension is only available if extension version 0x00070000 or higher is negotiated.

Class Details

class CCiscoLineDevSpecificDeacquire : public CCiscoLineDevSpecific
{
 public:
CCiscoLineDevSpecificDeacquire () : CCiscoLineDevSpecific(SLDST_ACQUIRE) {}
 virtual ~ CCiscoLineDevSpecificDeacquire () {}
 char m_DeviceName[16];
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 // subtract out the virtual function table pointer
};

Parameters

DWORD m_MsgType

Equals SLDST_DEACQUIRE

char m_DeviceName[16]

The DeviceName that needs to be explicitly de-acquired.
4-26
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Redirect FAC CMC
CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificRedirectFACCMC

Description

The CCiscoLineDevSpecificRedirectFACCMC class is used to redirect a call to another party that
requires a FAC, CMC, or both.

Note This extension is only available if extension version 0x00050000 or higher is negotiated.

If the FAC is invalid, then the TSP will return a new device specific error code
LINEERR_INVALIDFAC. If the CMC is invalid, then the TSP will return a new device specific
error code LINEERR_INVALIDCMC.

Class Detail

class CCiscoLineDevSpecificRedirectFACCMC: public CCiscoLineDevSpecific
{
public:
 CCiscoLineDevSpecificRedirectFACCMC () : CCiscoLineDevSpecific(SLDST_REDIRECT_FAC_CMC)
{}
 virtual ~ CCiscoLineDevSpecificRedirectFACCMC () {}

char m_DestDirn[49];
char m_FAC[17];
char m_CMC[17];

 // subtract virtual function table pointer
 virtual DWORD dwSize(void) const {return (sizeof (*this) - 4) ;
}

Parameters

DWORD m_MsgType

Equals SLDST_REDIRECT_FAC_CMC

char m_DestDirn[49]

Indicates the destination of the redirect.

char m_FAC[17]

Indicates the FAC digits. If the application does not want to pass any FAC digits, then it must set
this parameter to a NULL string.

char m_CMC[17]

Indicates the CMC digits. If the application does not want to pass any CMC digits, then it must set
this parameter to a NULL string.

HCALL hCall (in lineDevSpecific parameter list)

Equals the handle of the call to be redirected.
4-27
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Blind Transfer FAC CMC
CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificBlindTransferFACCMC

Description

The CCiscoLineDevSpecificBlindTransferFACCMC class is used to blind transfer a call to another
party that requires a FAC, CMC, or both.

Note This extension is only available if extension version 0x00050000 or higher is negotiated.

If the FAC is invalid, then the TSP will return a new device specific error code
LINEERR_INVALIDFAC. If the CMC is invalid, then the TSP will return a new device specific
error code LINEERR_INVALIDCMC.

Class Detail

class CCiscoLineDevSpecificBlindTransferFACCMC: public CCiscoLineDevSpecific
{
public:
 CCiscoLineDevSpecificBlindTransferFACCMC () :
CCiscoLineDevSpecific(SLDST_BLIND_TRANSFER_FAC_CMC) {}
 virtual ~ CCiscoLineDevSpecificBlindTransferFACCMC () {}

char m_DestDirn[49];
char m_FAC[17];
char m_CMC[17];

 // subtract virtual function table pointer
 virtual DWORD dwSize(void) const {return (sizeof (*this) - 4) ;
}

Parameters

DWORD m_MsgType

Equals SLDST_BLIND_TRANSFER_FAC_CMC

char m_DestDirn[49]

Indicates the destination of the blind transfer.

char m_FAC[17]

Indicates the FAC digits. If the application does not want to pass any FAC digits, then it must set
this parameter to a NULL string.

char m_CMC[17]

Indicates the CMC digits. If the application does not want to pass any CMC digits, then it must set
this parameter to a NULL string.

HCALL hCall (in lineDevSpecific parameter list)

Equals the handle of the call to be blind transferred.
4-28
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
CTI Port Third Party Monitor
CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificCTIPortThirdPartyMonitor

Description

The CCiscoLineDevSpecificCTIPortThirdPartyMonitor class is used for opening CTI ports in third
party mode.

To use this class, the lineNegotiateExtVersion API must be called before opening the line. When calling
lineNegotiateExtVersion the highest bit must be set on both the dwExtLowVersion and
dwExtHighVersion parameters. This causes the call to lineOpen to behave differently. The line is not
actually opened, but waits for a lineDevSpecific call to complete the open with more information. The
extra information required is provided in the CCiscoLineDevSpecificCTIPortThirdPartyMonitor class.

Procedure

Step 1 Call lineNegotiateExtVersion for the deviceID of the line to be opened. (OR 0x80000000 with the
dwExtLowVersion and dwExtHighVersion parameters)

Step 2 Call lineOpen for the deviceID of the line to be opened.

Step 3 Call lineDevSpecific with a CCiscoLineDevSpecificCTIPortThirdPartyMonitor message in the
lpParams parameter.

Note This extension is only available if extension version 0x00050000 or higher is negotiated.

Class Detail

class CCiscoLineDevSpecificCTIPortThirdPartyMonitor: public CCiscoLineDevSpecific
{
public:

CCiscoLineDevSpecificCTIPortThirdPartyMonitor () :
CCiscoLineDevSpecific(SLDST_CTI_PORT_THIRD_PARTY_MONITOR) {}
virtual ~ CCiscoLineDevSpecificCTIPortThirdPartyMonitor () {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;} //
subtract out the virtual function table pointer

};

Parameters

DWORD m_MsgType

equals SLDST_CTI_PORT_THIRD_PARTY_MONITOR
4-29
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Line Device Specific Extensions
Send Line Open
CCiscoLineDevSpecific
|
+-- CciscoLineDevSpecificSendLineOpen

Description

The CciscoLineDevSpecificSendLineOpen class is used for general delayed open purpose. To use this
class, the lineNegotiateExtVersion API must be called before opening the line. When calling
lineNegotiateExtVersion the second highest bit must be set on both the dwExtLowVersion and
dwExtHighVersion parameters. This causes the call to lineOpen to behave differently. The line is not
actually opened, but waits for a lineDevSpecific call to complete the open with more information. The
extra information required is provided in the CciscoLineDevSpecificUserSetSRTPAlgorithmID class.

Procedure

Step 1 Call lineNegotiateExtVersion for the deviceID of the line to be opened. (0x40070000 with the
dwExtLowVersion and dwExtHighVersion parameters)

Step 2 Call lineOpen for the deviceID of the line to be opened.

Step 3 Call other lineDevSpecific, like CciscoLineDevSpecificUserSetSRTPAlgorithmID message in the
lpParams parameter to specify SRTP algorithm ids.

Step 4 Call lineDevSpecific with either CciscoLineDevSpecificSendLineOpen to trigger the lineopen from TSP
side.

Note This extension is only available if extension version 0x40070000 or higher is negotiated.

Class Detail

class CciscoLineDevSpecificSendLineOpen: public CCiscoLineDevSpecific
 {
 public:
 CciscoLineDevSpecificSendLineOpen () :

CCiscoLineDevSpecific(SLDST_SEND_LINE_OPEN) {}

 virtual ~ CciscoLineDevSpecificSendLineOpen () {}
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;} // subtract out the virtual
function table pointer
};
4-30
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Phone Device Specific Extensions
Cisco Phone Device Specific Extensions
Table 4-2 lists the subclasses of CiscoPhoneDevSpecific.

CCiscoPhoneDevSpecific
CCiscoPhoneDevSpecific
|
+-- CCiscoPhoneDevSpecificDataPassThrough

Description

This section provides information on how to perform Cisco TAPI specific functions with the
CCiscoPhoneDevSpecific class, which is the parent class to all the following classes. It is a virtual class
and is provided here for informational purposes.

Header File

The file CiscoLineDevSpecific.h contains the constant, structure and class definition for the Cisco phone
device specific classes.

Class Detail

class CCiscoPhoneDevSpecific
{

public :
CCiscoPhoneDevSpecific(DWORD msgType):m_MsgType(msgType) {;}
virtual ~CCiscoPhoneDevSpecific() {;}
DWORD GetMsgType (void) const { return m_MsgType;}
void *lpParams(void) const {return (void*)&m_MsgType;}
virtual DWORD dwSize(void) const = 0;

private :
DWORD m_MsgType ;

}

Table 4-2 Cisco Phone Device Specific TAPI functions

Cisco Functions Synopsis

CCiscoPhoneDevSpecific The CCiscoPhoneDevSpecific class is the parent class
to the following classes.

CCiscoPhoneDevSpecificDataPassThrough Allows application to send the Device Specific XSI
data through CTI.

CCiscoPhoneDevSpecificAcquire Allows application to acquire any CTI Controllable
device that can be later opened in superprovider mode.

CCiscoPhoneDevSpecificDeacquire Allows application to de-acquire a CTI Controllable
device that was explicitly acquired.

CCiscoPhoneDevSpecificGetRTPSnapshot Allows application to request secure RTP indicator for
calls on the device.
4-31
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Phone Device Specific Extensions
Functions

lpParms()

function can be used to obtain the pointer to the parameter block

dwSize()

function will give the size of the parameter block area

Parameter

m_MsgType

specifies the type of message.

Subclasses

Each subclass of CCiscoPhoneDevSpecific has a different value assigned to the parameter m_MsgType.
If you are using C instead of C++, this is the first parameter in the structure.

Enumeration

Valid message identifiers are found in the CiscoPhoneDevSpecificType enumeration.

enum CiscoLineDevSpecificType {
CPDST_DEVICE_DATA_PASSTHROUGH_REQUEST = 1
};

CCiscoPhoneDevSpecificDataPassThrough
CCiscoPhoneDevSpecific
|
+-- CCiscoPhoneDevSpecificDataPassThrough

XSI enabled IP phones allow applications to directly communicate with the phone and access XSI
features (e.g. manipulate display, get user input, play tone, etc.). In order to allow TAPI applications
access to some of these XSI capabilities without having to setup and maintain an independent connection
directly to the phone, TAPI will provide the ability to send device data through the CTI interface. This
feature is exposed as a Cisco Unified TSP device specific extension.

PhoneDevSpecificDataPassthrough request is only supported for the IP phone devices. Application has
to open a TAPI phone device with minimum extension version 0x00030000 to make use of this feature.

Description

The CCiscoPhoneDevSpecificDataPassThrough class is used to send the device specific data to CTI
controlled IP Phone devices.

Note This extension requires applications to negotiate extension version as 0x00030000.
4-32
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Phone Device Specific Extensions
Class Detail

class CCiscoPhoneDevSpecificDataPassThrough : public CCiscoPhoneDevSpecific
{
public:

CCiscoPhoneDevSpecificDataPassThrough () :
 CCiscoPhoneDevSpecific(CPDST_DEVICE_DATA_PASSTHROUGH_REQUEST)

{
 memset((char*)m_DeviceData, 0, sizeof(m_DeviceData)) ;
}
virtual ~CCiscoPhoneDevSpecificDataPassThrough() {;}
// data size determined by MAX_DEVICE_DATA_PASSTHROUGH_SIZE
TCHAR m_DeviceData[MAX_DEVICE_DATA_PASSTHROUGH_SIZE] ;
// subtract out the virtual funciton table pointer size
virtual DWORD dwSize (void) const {return (sizeof (*this)-4) ;}

}

Parameters

DWORD m_MsgType

equals CPDST_DEVICE_DATA_PASSTHROUGH_REQUEST.

DWORD m_DeviceData

This is the character buffer containing the XML data to be sent to phone device

Note MAX_DEVICE_DATA_PASSTHROUGH_SIZE = 2000

A phone can pass data to an application and it can be retrieved by using PhoneGetStatus
(PHONESTATUS:devSpecificData). See PHONESTATUS description for further details.

CCiscoPhoneDevSpecificAcquire
CCiscoPhoneDevSpecific
|
+-- CCiscoPhoneDevSpecificAcquire

Description

The CCiscoPhoneDevSpecificAcquire class is used to explicitly acquire any CTI controllable device.

If an Superprovider app needs to open any CTI Controllable device on the Unified CM system. The app
should explicitly acquire that device using the above interface. After successful response, it can open the
device as usual.

Note This extension is only available if extension version 0x00070000 or higher is negotiated.
4-33
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Cisco Phone Device Specific Extensions
Class Details
class CCiscoPhoneDevSpecific Acquire : public CCiscoPhoneDevSpecific
{
 public:
CCiscoPhoneDevSpecificAcquire () : CCiscoPhoneDevSpecific (CPDST_ACQUIRE) {}
 virtual ~ CCiscoPhoneDevSpecificAcquire () {}
 char m_DeviceName[16];
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 // subtract out the virtual function table pointer
};

Parameters

DWORD m_MsgType

equals CPDST_ACQUIRE

char m_DeviceName[16]

The DeviceName that needs to be explicitly acquired.

CCiscoPhoneDevSpecificDeacquire
CCiscoPhoneDevSpecific
|
+-- CCiscoPhoneDevSpecificDeacquire

Description

The CCiscoPhoneDevSpecificDeacquire class is used to explicitly de-acquire an explicitly acquired device.

If a SuperProvider application has explicitly acquired any CTI Controllable device on the CallManager
system, then the application should explicitly de-acquire that device using this interface.

Note This extension is only available if extension version 0x00070000 or higher is negotiated.

Class Details
class CCiscoPhoneDevSpecificDeacquire : public CCiscoPhoneDevSpecific
{
 public:
CCiscoPhoneDevSpecificDeacquire () : CCiscoPhoneDevSpecific (CPDST_ACQUIRE) {}
 virtual ~ CCiscoPhoneDevSpecificDeacquire () {}
 char m_DeviceName[16];
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 // subtract out the virtual function table pointer
};

Parameters

DWORD m_MsgType

equals CPDST_DEACQUIRE

char m_DeviceName[16]

The DeviceName that needs to be explicitly de-acquired.
4-34
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Messages
CCiscoPhoneDevSpecificGetRTPSnapshot
CCiscoPhoneDevSpecific
|
+-- CCiscoPhoneDevSpecificGetRTPSnapshot

Description

The CCiscoPhoneDevSpecificGetRTPSnapshot class is used to request Call RTP snapshot event from
the device. There will be LineCallDevSpecific event for each call on the device.

Note This extension is only available if extension version 0x00070000 or higher is negotiated.

Class Details

class CCiscoPhoneDevSpecificGetRTPSnapshot: public CCiscoPhoneDevSpecific
{
 public:
CCiscoPhoneDevSpecificGetRTPSnapshot () : CCiscoPhoneDevSpecific
(CPDST_REQUEST_RTP_SNAPSHOT_INFO) {}
 virtual ~ CCiscoPhoneDevSpecificGetRTPSnapshot () {}
 char m_DeviceName[16];
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 // subtract out the virtual function table pointer
};

Parameters

DWORD m_MsgType

equals CPDST_DEACQUIRE

char m_DeviceName[16]

The DeviceName that needs to be explicitly de-acquired.

Messages
This section describes the line device specific messages that the Cisco Unified TSP supports.

Description
An application receives nonstandard TAPI messages in the following LINE_DEVSPECIFIC messages:

• A message to signal when to stop and start streaming RTP audio.

• A message containing the call handle of active calls when the application starts up.

• A message indicating to set the RTP parameters based on the data of the message.

• A message indicating secure media status.
4-35
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Messages
The message type is an enumerated integer with the following values:

enum CiscoLineDevSpecificMsgType
{

SLDSMT_START_TRANSMISION = 1,
SLDSMT_STOP_TRANSMISION,
SLDSMT_START_RECEPTION,
SLDSMT_STOP_RECEPTION,
SLDSMT_LINE_EXISTING_CALL,
SLDSMT_OPEN_LOGICAL_CHANNEL,
SLDSMT_CALL_TONE_CHANGED,
SLDSMT_LINECALLINFO_DEVSPECIFICDATA,
SLDSMT_NUM_TYPE

};

Start Transmission Events

SLDSMT_START_TRANSMISION

When a message is received, the RTP stream transmission should commence.

• dwParam2 specifies the network byte order IP address of the remote machine to which the RTP
stream should be directed.

• dwParam3, specifies the high-order word that is the network byte order IP port of the remote
machine to which the RTP stream should be directed.

• dwParam3, specifies the low-order word that is the packet size in milliseconds to use.

The application receives these messages to signal when to start streaming RTP audio. At extension
version 1.0 (0x00010000), the parameters have the following format:

• dwParam1 contains the message type.

• dwParam2 contains the IP address of the remote machine.

• dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.

At extension version 2.0 (0x00020000), start transmission has the following format:

• dwParam1:from highest order bit to lowest

• First two bits blank

• Precedence value 3 bits

• Maximum frames per packet 8 bits

• G723 bit rate 2 bits

• Silence suppression value 1 bit

• Compression type 8 bits

• Message type 8 bits

• dwParam2 contains the IP address of the remote machine

• dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.
4-36
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Messages
At extension version 4.0 (0x00040000), start transmission has the following format:

• hCall – The call of the Start Transmission event

• dwParam1:from highest order bit to lowest

– First two bits blank

– Precedence value 3 bits

– Maximum frames per packet 8 bits

– G723 bit rate 2 bits

– Silence suppression value 1 bit

– Compression type 8 bits

– Message type 8 bits

• dwParam2 contains the IP address of the remote machine

• dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.

Start Reception Events

SLDSMT_START_RECEPTION

When a message is received, the RTP stream reception should commence.

• dwParam2 specifies the network byte order IP address of the local machine to use.

• dwParam3, specifies the high-order word that is the network byte order IP port to use.

• dwParam3, specifies the low-order high-order word that is the packet size in milliseconds to use.

When a message is received, the RTP stream reception should commence.

At extension version 1, the parameters have the following format:

• dwParam1 contains the message type.

• dwParam2 contains the IP address of the remote machine.

• dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.

At extension version 2 start reception has the following format:

• dwParam1:from highest order bit to lowest

• First 13 bits blank

• G723 bit rate 2 bits

• Silence suppression value 1 bit

• Compression type 8 bits

• Message type 8 bits

• dwParam2 contains the IP address of the remote machine

• dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.
4-37
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Messages
At extension version 4.0 (0x00040000), start reception has the following format:

• hCall – The call of the Start Reception event

• dwParam1:from highest order bit to lowest

– First 13 bits blank

– G723 bit rate 2 bits

– Silence suppression value 1 bit

– Compression type 8 bits

– Message type 8 bits

• dwParam2 contains the IP address of the remote machine

• dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.

Stop Transmission Events

SLDSMT_STOP_TRANSMISION

When a message is received, transmission of the streaming should be stopped.

At extension version 1.0 (0x00010000), stop transmission has the following format:

• dwParam1 – Message type

At extension version 4.0 (0x00040000), stop transmission has the following format:

• hCall – The call the Stop Transmission event is for

• dwParam1 – Message type

Stop Reception Events

SLDSMT_STOP_RECEPTION

When a message is received, reception of the streaming should be stopped.

At extension version 1.0 (0x00010000), stop reception has the following format:

• dwParam1 - message type

At extension version 4.0 (0x00040000), stop reception has the following format:

• hCall – The call the Stop Reception event is for

• dwParam1 – Message type

Existing Call Events

SLDSMT_LINE_EXISTING_CALL

These events inform the application of existing calls in the PBX when it starts up. The format of the
parameters is as follows:

• dwParam1 – Message type

• dwParam2 – Call object

• dwParam3 – TAPI call handle
4-38
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Messages
Open Logical Channel Events

SLDSMT_OPEN_LOGICAL_CHANNEL

When a call has media established at a CTI Port or Route Point that is registered for Dynamic Port
Registration, this message is received indicating that an IP address and UDP port number needs to be set
for the call.

Note This extension is only available if extension version 0x00040000 or higher gets negotiated.

The following is the format of the parameters:

• hCall - The call the Open Logical Channel event is for

• dwParam1 – Message type

• dwParam2 – Compression Type

• dwParam3 – Packet size in milliseconds

LINECALLINFO_DEVSPECIFICDATA Events

SLDSMT_LINECALLINFO_DEVSPECIFICDATA

This message indicates DEVSPECIFICDATA information change in the DEVSPECIFIC portion of the
LINECALLINFO structure for SRTP, QoS and Partition support.

Note This event is available only if extension version 0x00070000 or higher is negotiated.

The format of the parameters is:

• hCall - The call handle

• dwParam1 - Message type

SLDSMT_LINECALLINFO_DEVSPECIFICDATA\

• dwParam2 - This is a bitMask Indicator field for SRTP, QoS and Partition.

SLDST_SRTP_INFO | SLDST_QOS_INFO | SLDST_PARTITION_INFO | SLDST_EXTENDED_CALL_INFO

The bit mask values are:

SLDST_SRTP_INFO = 0x00000001
SLDST_QOS_INFO = 0x00000002
SLDST_PARTITION_INFO = 0x00000004
SLDST_EXTENDED_CALL_INFO = 0x00000008

For example, if there are changes in SRTP and QoS but not in Partition, then both the
SLDST_SRTP_INFO and SLDST_QOS_INFO bits will be set. The value for dwParam2 =
SLDST_SRTP_INFO | SLDST_QOS_INFO = 0x00000011.

• dwParam3

If there is a change in the SRTP Information, then this field would contain the
CiscoSecurityIndicator.
4-39
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Messages
enum CiscoSecurityIndicator
{
 SRTP_MEDIA_ENCRYPT_KEYS_AVAILABLE,
 SRTP_MEDIA_ENCRYPT_USER_NOT_AUTH,
 SRTP_MEDIA_ENCRYPT_KEYS_UNAVAILABLE,
 SRTP_MEDIA_NOT_ENCRYPTED
};

Note dwParam3 is used when dwParam2 has the SRTP bit mask set.

Call Tone Changed Events

SLDSMT_CALL_TONE_CHANGED

When a tone change occurs on a call, this message is received indicating the tone and the feature that
caused the tone change.

Note This extension is only available if extension version 0x00050000 or higher is negotiated. In the
Cisco Unified TSP 4.1 release and beyond, this event will only be sent for Call Tone Changed Events
where the tone is CTONE_ZIPZIP and the tone is being generated as a result of the FAC/CMC feature.

The format of the parameters is as follows:

• hCall—The call that the Call Tone Changed event is for

• dwParam—Message type

• dwParam2—CTONE_ZIPZIP, 0x31 (Zip Zip tone)

• dwParam3—If dwParam2 is CTONE_ZIPZIP, this parameter contains a bitmask with the following
possible values:

– CZIPZIP_FACREQUIRED—If this bit is set, it indicates that a FAC is required.

– CZIPZIP_CMCREQUIRED—If this bit is set, it indicates that a CMC is required.

Note For a DN that requires both codes, the first event is always for the FAC and CMC code. The application
has the option to send both codes separated by # in the same request. The second event generation is
optional based on what the application sends in the first request.
4-40
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Message Sequence Charts
This section illustrates a subset of the call scenarios supported by the Cisco Unified TSP. The event
order is not guaranteed in all cases and can vary depending on the scenario and the event.

The following is a list of abbreviations used in the CTI events shown in each scenario.

• NP—Not Present

• LR—LastRedirectingParty

• CH—CtiCallHandle

• GCH—CtiGlobalCallHandle

• RIU—RemoteInUse flag

• DH—DeviceHandle

Manual Outbound Call

Precondition

Party A is idle.

Action CTI Messages TAPI Messages TAPI Structures

1. Party A goes offhook NewCallEven
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_APPNEWCALL
hDevice=A
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Dialtone,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALTONE
dwParam2=UNAVAIL
dwParam3=0

No change

2. Party A dials Party B CallStateChangedEvent,
CH=C1,
State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change
4-41
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
3. Party B accepts call CallStateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=PROCEEDING
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

4. Party B answers call CallStateChangedEvent,
CH=C1,
State=Connected,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTED
dwParam2=ACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=B
dwRedirectionID=NP
dwRedirectionID=NP

CallStartReceptionEvent,
DH=A, CH=C1

LINE_DEVSPECIFIC1

hDevice=hCall-1
dwCallBackInstance=0
dwParam1=StartReception
dwParam2=IP Address
dwParam3=Port

No change

CallStartTransmissionEvent,
DH=A, CH=C1

LINE_DEVSPECIFIC2

hDevice=hCall-1
dwCallBackInstance=0
dwParam1=StartTransmission
dwParam2=IP Address
dwParam3=Port

No change

1. LINE_DEVSPECIFIC events are sent only if the application has requested them using lineDevSpecific()

2. LINE_DEVSPECIFIC events are sent only if the application has requested them using lineDevSpecific()
4-42
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Blind Transfer

Precondition

A calls B. B answers. A and B are connected.

Action CTI Messages TAPI Messages TAPI Structures

Party B does a lineBlindTranfser()
to blind transfer call from party A
to party C

Party A

CallPartyInfoChangedEvent,
CH=C1,
CallingChanged=False,
Calling=A,
CalledChanged=True,
Called=C,
OriginalCalled=B,
LR=B,
Cause=BlindTransfer

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTEDID,
REDIRECTINGID,
REDIRECTIONID

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NULL
dwRedirectingID=NP
dwRedirectionID=NP

Party B

CallStateChangedEvent,
CH=C2,
State=Idle,
Reason=Direct,
Calling=A,
Called=B,
OriginalCalled=B,
LR=NULL

TSPI: LINE_CALLSTATE
|hDevice=hCall-1
dwCallbackInstance=0
dwParam1=IDLE
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NULL
dwRedirectingID=NULL
dwRedirectionID=NULL

Party C

NewCallEvent,
CH=C3,
origin=Internal_Inbound,
Reason=BlindTransfer,
Calling=A,
Called=C,
OriginalCalled=B,
LR=B

TSPI: LINE_APPNEWCALL
hDevice=C
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwReason=TRANSFER
dwCallerID=A
dwCalledID=C
dwConnectedID=NULL
dwRedirectingID=B
dwRedirectionID=C

Party C is offering Party A

CallStateChangeEvent,
CH=C1,
State=Ringback,
Reason=Direct,
Calling=A,
Called=C,
OriginalCalled=B,
LR=B

TSPI: LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1= RINGBACK
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NULL
dwRedirectingID=B
dwRedirectionID=C

Party C

CallStateChangedEvent,
CH=C3,
State=Offering,
Reason=BlindTransfer,
Calling=A,
Called=C,
OriginalCalled=B, LR=B

TSPI: LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1= OFFERING
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwCallerID=A
dwCalledID=C
dwConnectedID=NULL
dwRedirectingID=B
dwRedirectionID=C
4-43
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Redirect Set Original Called (TxToVM)

Precondition

A calls B. B answers. A and B are connected.

Action CTI Messages TAPI Messages TAPI Structures

Party B does lineDevSpecific for
REDIRECT_SET_ORIG_CALLED
with DestDN = C's VMP and
SetOrigCalled = C.

Party A

CallPartyInfoChangedEvent,
CH=C1, CallingChanged=False,
Calling=A, CalledChanged=True,
Called=C, OriginalCalled=NULL,
LR=NULL, Cause=Redirect

LINE_CALLINFO,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1=CONNECTEDID,
REDIRECTINGID,
REDIRECTIONID

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=C
dwConnectedID=NULL
dwRedirectingID=NP
dwRedirectionID=NP

Party B

CallStateChangedEvent,
CH=C2,
State=Idle,
reason=DIRECT,
Calling=A,
Called=B,
OriginalCalled=B,
LR=NULL

TSPI: LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1=IDLE
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NULL
dwRedirectingID=NULL
dwRedirectionID=NULL

Party C's VMP

NewCallEvent,
CH=C3,
origin=Internal_Inbound,
reason=Redirect,
Calling=A,
Called=C,
OriginalCalled=C,
LR=B

TSPI: LINE_APPNEWCALL
hDevice=C
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwReason=REDIRECT
dwCallerID=A
dwCalledID=C
dwConnectedID=NULL
dwRedirectingID=B
dwRedirectionID=C's VMP

Party C is offering Party A

CallStateChangeEvent,
CH=C1,
State=Ringback,
Reason=Direct,
Calling=A,
Called=C,
OriginalCalled=C,
LR=B

TSPI: LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1= RINGBACK
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NULL
dwRedirectingID=B
dwRedirectionID=C's VMP

Party C

CallStateChangedEvent,
CH=C3,
State=Offering,
Reason=Redirect,
Calling=A,
Called=C,
OriginalCalled=C,
LR=B

TSPI: LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1= OFFERING
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwCallerID=A
dwCalledID=C
dwConnectedID=NULL
dwRedirectingID=B
dwRedirectionID=C
4-44
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Shared Line Scenarios

Initiate a New Call Manually

Party A and Party A’ are shared line appearances.

Party A and Party A’ are idle.

Action CTI Messages TAPI Messages TAPI Structures

1. Party A goes offhook NewCallEvent,
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct,
RIU=false

LINE_APPNEWCALL
hDevice=A
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Dialtone,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALTONE
dwParam2=UNAVAIL
dwParam3=0

No change

Party A’

NewCallEvent,
CH=C1,
GCH=G1,
Calling=A’,
Called=NP,
OrigCalled=NP,
LR=NP, S
tate=Dialtone,
Origin=OutBound,
Reason=Direct,
RIU=true

LINE_APPNEWCALL
hDevice=A’
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-2
dwParam3=OWNER

LINECALLINFO (hCall-2)
hLine=A’
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A’
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Dialtone,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
RIU=true

LINE_CALLSTATE
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=CONNECTED
dwParam2=INACTIVE
dwParam3=0

No change
4-45
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
2. Party A dials Party B Party A

CallStateChangedEvent,
CH=C1,
State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change

Party A’

None None None

3. Party B accepts call Party A

CallPartyInfoChangedEvent,
CH=C1,
CallingChanged=False,
Calling=A,
CalledChanged=true,
Called=B,
Reason=Direct,
RIU=false

Ignored No change

CallStateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP,
RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=PROCEEDING
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=
CALLERID, CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP,
RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change
4-46
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
3. Party B accepts call
(continued)

Party A’

CallPartyInfoChangedEvent,
CH=C1,
CallingChanged=False,
Calling=A’,
CalledChanged=true,
Called=B,
Reason=Direct,
RIU=true

Ignored No change

CallStateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A’,
Called=B,
OrigCalled=B,
LR=NP,
RIU=true

LINE_CALLSTATE
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=CONNECTED
dwParam2=INACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=
CALLERID, CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-2)
hLine=A’
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A’
dwCalledID=B
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1, State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A’, Called=B,
OrigCalled=B,
LR=NP, RIU=true

LINE_CALLSTATE
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=CONNECTED
dwParam2=INACTIVE
dwParam3=0

No change

4. Party B answers call Party A

CallStateChangedEvent,
CH=C1,
State=Connected,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP,
RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTED
dwParam2=ACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTEDID
dwParam2=0, dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=B
dwRedirectionID=NP
dwRedirectionID=NP

Party A’

CallStateChangedEvent,
CH=C1,
State=Connected,
Cause=CauseNoError,
Reason=Direct,
Calling=A’,
Called=B,
OrigCalled=B,
LR=NP,
RIU=true

LINE_CALLSTATE
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=CONNECTED
dwParam2=INACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=CONNECTEDID
dwParam2=0, dwParam3=0

LINECALLINFO (hCall-2)
hLine=A’
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A’
dwCalledID=B
dwConnectedID=B
dwRedirectionID=NP
dwRedirectionID=NP
4-47
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Presentation Indication

Make a Call Through Translation Pattern

In the Translation pattern admin pages, both the callerID/Name and ConnectedID/Name are set to
"Restricted".

Action CTI Messages TAPI Messages TAPI Structures

Party A goes offhook NewCallEvent,
CH=C1, GCH=G1,
Calling=A, Called=NP,
OrigCalled=NP, LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_APPNEWCALL
hDevice=A
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1, State=Dialtone,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALTONE
dwParam2=UNAVAIL
dwParam3=0

No change

Party A dials Party B through
Translation pattern

CallStateChangedEvent,
CH=C1, State=Dialing,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change

Party B accepts the call CallStateChangedEvent,
CH=C1, State=Proceeding,
Cause=CauseNoError,
Reason=Direct, Calling=A,
CallingPartyPI=Allowed,
Called=B, CalledPartyPI=
Restricted, OrigCalled=B,
OrigCalledPI=restricted,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=
PROCEEDING
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCallerIDName=A's Name
dwCalledID=B
dwCalledIDName=B’s name
dwConnectedID=NP
dwConnectedIDName=NP
dwRedirectionID=NP
dwRedirectionIDName=NP
dwRedirectionID=NP
dwRedirectionIDName=NP
4-48
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Party B accepts the call
(continued)

CallStateChangedEvent,
CH=C1, State=Ringback,
Cause=CauseNoError,
Reason=Direct, Calling=A,
CallingPI = Allowed, Called=B,
CalledPI = Restricted,
OrigCalled=B, OrigCalledPI =
Restricted, LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP

Party B answers the call CallStateChangedEvent,
CH=C1, State=Connected,
Cause=CauseNoError,
Reason=Direct, Calling=A,
CallingPI = Allowed, Called=B,
CalledPI = Restricted,
OrigCalled=B, OrigCalledPI =
Restricted, LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTED
dwParam2=ACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCallerIDName=A's Name
dwCalledID=B
dwCalledIDName=B’s Name
dwConnectedID=A,
dwConnectedIDName=
A's Name,
dwRedirectingID=NP
dwRedirectingIDName=NP
dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=NP

CallStartReceptionEvent,
DH=A, CH=C1

LINE_DEVSPECIFIC1
hDevice=hCall-1
dwCallBackInstance=0
dwParam1=
StartReception
dwParam2=IP Address
dwParam3=Port

No change

CallStartTransmissionEvent,
DH=A, CH=C1

LINE_DEVSPECIFIC1

hDevice=hCall-1
dwCallBackInstance=0
dwParam1=
StartTransmission
dwParam2=IP Address
dwParam3=Port

No change

1. LINE_DEVSPECIFIC events are only sent if the application has requested for them using lineDevSpecific().
4-49
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Blind Transfer Through Translation Pattern

A calls via translation pattern B.

B answers.

A and B are connected.

Action CTI Messages TAPI Messages TAPI Structures
4-50
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Party B does a lineBlindTranfser()
to blind transfer call from party A
to party C via translation pattern

Party A

CallPartyInfoChangedEvent,
CH=C1,
CallingChanged=False,
Calling=A,
CallingPartyPI=Restricted,
CalledChanged=True,
Called=C,
CalledPartyPI=Restricted,
OriginalCalled=NULL,
OriginalCalledPI=Restricted,
LR=NULL,
Cause=BlindTransfer

LINE_CALLINFO,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1=CONNECTEDID,
REDIRECTINGID,
REDIRECTIONID

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerIDFlags =
LINECALLPARTYID_
BLOCKED
dwCallerID=NP
dwCallerIDName=NP
dwCalledID=B
dwCalledIDName=B’s name
dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwConnectedIDName=NP
dwRedirectingID=B
dwRedirectingIDName=
B’s name
dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=NP

Party B

CallStateChangedEvent,
CH=C2,
State=Idle, Reason=Direct,
Calling=A,
CallingPartyPI=Restricted,
Called=B,
CalledPartyPI=Restricted,
OriginalCalled=B,
OrigCalledPartyPI=Restricted,
LR=NULL

TSPI: LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1=IDLE
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwReason=DIRECT
dwCallerIDFlags =
LINECALLPARTYID_
BLOCKED
dwCallerID=NP
dwCallerIDName=NP
dwCalledID=B
dwCalledIDName=B’s name
dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwConnectedIDName=NP
dwRedirectingID=B
dwRedirectingIDName=
B’s name
dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=NP
4-51
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Party B does a lineBlindTranfser()
to blind transfer call from party A
to party C via translation pattern
(continued)

Party C

NewCallEvent,
CH=C3,
origin=Internal_Inbound,
Reason=BlindTransfer,
Calling=A,
CallingPartyPI=Restricted,
Called=C,
CalledPartyPI=Restricted,
OriginalCalled=B,
OrigCalledPartyPI=Restricted,
LR=B,
LastRedirectingPartyPI=
Restricted

TSPI: LINE_APPNEWCALL
hDevice=C
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwReason=TRANSFER
dwCallerIDFlags =
LINECALLPARTYID_
BLOCKED
dwCallerID=NP
dwCallerIDName=NP
dwCalledID=NP
dwCalledIDName=NP
dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwConnectedIDName=NP
dwRedirectingID=B
dwRedirectingIDName=
B's name
dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=NP

Party C is offering Party A

CallStateChangeEvent,
CH=C1,
State=Ringback,
Reason=Direct,
Calling=A,
CallingPartyPI=Restricted,
Called=C,
CalledPartyPI=Restricted,
OriginalCalled=B,
OrigCalledPartyPI=Restricted,
LR=B,
LastRedirectingPartyPI=
Restricted

TSPI: LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1= RINGBACK
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerIDFlags =
LINECALLPARTYID_
BLOCKED
dwCallerID=NP
dwCallerIDName=NP
dwCalledID=B
dwCalledIDName=B’s name
dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwConnectedIDName=NP
dwRedirectingID=B
dwRedirectingIDName=
B’s name
dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=NP
4-52
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Forced Authorization and Client Matter Code Scenarios

Manual Call to a Destination that Requires a FAC

Preconditions

Party A is Idle. Party B requires an FAC.

Note that the scenario is similar if Party B requires a CMC instead of an FAC.

Party C is offering (continued) Party C

CallStateChangedEvent,
CH=C3,
State=Offering,
Reason=BlindTransfer,
Calling=A,
CallingPartyPI=Restricted,
Called=C,
CalledPartyPI=Restricted,
OriginalCalled=B,
OrigCalledPartyPI=Restricted,
LR=B,
LastRedirectingPartyPI=
Restricted

TSPI: LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1= OFFERING
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwCallerIDFlags =
LINECALLPARTYID_
BLOCKED dwCallerID=NP
dwCallerIDName=NP
dwCalledID=NP
dwCalledIDName=NP
dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwConnectedIDName=NP
dwRedirectingID=B
dwRedirectingIDName=
B's name
dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=NP

Actions CTI Message TAPI Messages TAPI Structures

Party A goes offhook NewCallEvent,
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_APPNEWCALL
hDevice=A
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Dialtone,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALTONE
dwParam2=UNAVAIL
dwParam3=0

No change
4-53
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Party A dials Party B CallStateChangedEvent,
CH=C1,
State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change

CallToneChangedEvent,
CH=C1,
Tone=ZipZip,
Feature=FACCMC,
FACRequired=True,
CMCRequired=False

LINE_DEVSPECIFIC
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=SLDSMT_CALL_
TONE_CHANGED
dwParam2=CTONE_ZIPZIP
dwParam3=
CZIPZIP_FACREQUIRED

No change

Party A dials the FAC and Party
B accepts the call

CallStateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=PROCEEDING
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

Actions CTI Message TAPI Messages TAPI Structures
4-54
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Manual Call to a Destination that Requires both FAC and CMC

Preconditions

Party A is Idle. Party B requires an FAC and a CMC.

Actions CTI Message TAPI Messages TAPI Structures

Party A goes offhook NewCallEvent,
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_APPNEWCALL
hDevice=A
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Dialtone,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALTONE
dwParam2=UNAVAIL
dwParam3=0

No change

Party A dials Party B CallStateChangedEvent,
CH=C1,
State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change

CallToneChangedEvent,
CH=C1,
Tone=ZipZip,
Feature=FACCMC,
FACRequired=True,
CMCRequired=True

LINE_DEVSPECIFIC
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=SLDSMT_CALL_
TONE_CHANGED
dwParam2=CTONE_ZIPZIP
dwParam3=
CZIPZIP_FACREQUIRED,
CZIPZIP_CMCREQUIRED

No change

Party A dials the FAC. CallToneChangedEvent,
CH=C1,
Tone=ZipZip,
Feature=FACCMC,
FACRequired=False,
CMCRequired=True

LINE_DEVSPECIFIC
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=SLDSMT_CALL_
TONE_CHANGED
dwParam2=CTONE_ZIPZIP
dwParam3=
CZIPZIP_CMCREQUIRED

No change
4-55
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
lineMakeCall to a Destination that Requires a FAC

Preconditions

Party A is Idle. Party B requires an FAC. Note that the scenario is similar if Party requires a CMC instead
of an FAC

Party A dials the CMC and Party
B accepts the call.

CallStateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=PROCEEDING
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

Actions CTI Message TAPI Messages TAPI Structures

Actions CTI Message TAPI Messages TAPI Structures

Party A does a lineMakeCall()
to Party B

NewCallEvent,
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=ORIGIN
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=
REASON, CALLERID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change
4-56
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
lineMakeCall to a Destination that Requires Both FAC and CMC

Preconditions

Party A is Idle. Party B requires both a FAC and a CMC.

Party A does a lineMakeCall()
to Party B (continued)

CallToneChangedEvent,
CH=C1, Tone=ZipZip,
Feature=FACCMC,
FACRequired=True,
CMCRequired=False

LINE_DEVSPECIFIC
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=SLDSMT_CALL_
TONE_CHANGED
dwParam2=CTONE_ZIPZIP
dwParam3=
CZIPZIP_FACREQUIRED

No change

Party A does a lineDial() with
the FAC in the dial string and
Party B accepts the call

NewCallEvent,
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=PROCEEDING
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

Actions CTI Message TAPI Messages TAPI Structures

Actions CTI Message TAPI Messages TAPI Structures

Party A does a lineMakeCall()
to Party B

NewCallEvent,
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=ORIGIN
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=
REASON, CALLERID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP
4-57
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Party A does a lineMakeCall()
to Party B (continued)

CallStateChangedEvent,
CH=C1,
State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change

CallToneChangedEvent,
CH=C1,
Tone=ZipZip,
Feature=FACCMC,
FACRequired=True,
CMCRequired=True

LINE_DEVSPECIFIC
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=SLDSMT_CALL_
TONE_CHANGED
dwParam2=CTONE_ZIPZIP
dwParam3=
CZIPZIP_FACREQUIRED,
CZIPZIP_CMCREQUIRED

No change

Party A does a lineDial() with
the FAC in the dial string

CallToneChangedEvent,
CH=C1,
Tone=ZipZip,
Feature=FACCMC,
FACRequired=False,
CMCRequired=True

LINE_DEVSPECIFIC
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=SLDSMT_CALL_
TONE_CHANGED
dwParam2=CTONE_ZIPZIP
dwParam3=
CZIPZIP_CMCREQUIRED

No change

Party A does a lineDial() with
the CMC in the dial string and
Party B accepts the call.

CallStateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=PROCEEDING
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

Actions CTI Message TAPI Messages TAPI Structures
4-58
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Timeout Waiting for FAC or Invalid FAC entered

Preconditions

Party A is Idle. Party B requires a FAC.

Note that the scenario is similar if Party B required a CMC instead of a FAC.

Actions CTI Message TAPI Messages TAPI Structures

Party A does a lineMakeCall()
to Party B.

NewCallEvent,
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=ORIGIN
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=
REASON, CALLERID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change

CallToneChangedEvent,
CH=C1,
Tone=ZipZip,
Feature=FACCMC,
FACRequired=True,
CMCRequired=False

LINE_DEVSPECIFIC
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=SLDSMT_CALL_
TONE_CHANGED
dwParam2=CTONE_ZIPZIP
dwParam3=
CZIPZIP_FACREQUIRED

No change

T302 timer times out waiting for
digits or Party A does a
lineDial() with an invalid FAC.

CallStateChangedEvent,
CH=C1, State=Disconnected,
Cause=
CtiNoRouteToDDestination,
Reason=FACCMC,
Calling=A, Called=NP,
OrigCalled=NP, LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DISCONNECTED
dwParam2=DISCONNECT
MODE_FACCMC1

dwParam3=0

1. dwParam2 will on be set to DISCONNECTMODE_FACCMC if the extension version on the line has been
set to at least 0x00050000. Otherwise, dwParam2 will be set to DISCONNECTMODE_UNAVAIL.

No change

CallStateChangedEvent,
CH=C1, State=Idle,
Cause=CtiCauseNoError,
Reason=Direct, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=IDLE
dwParam2=0
dwParam3=0

No change
4-59
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Refer / Replaces Scenarios

In-Dialog Refer - Referrer in Cisco Unified CallManager Cluster

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@Referree (B)

CallState/CallInfo
@Refer-to-Target (C)

Referrer (A), Referee (B,) and
Refer-to-Target (C) are present
in Cisco Unified CallManager
cluster and CTI is monitoring
those lines.

A-->B has a call in connected
state. The call party information
at A should be {calling=A,
called=B, LRP=null,
origCalled=B, reason=direct}

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = B
dwReason = Direct
dwOrigin =LINECALL
ORIGIN_INTERNAL

A-->B has a call in connected
state. The call party information
at B should be {calling=A,
called=B, LRP=null,
origCalled=B, reason=direct}

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = A
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL

(A) initiates REFER (B) to (C) A gets LINECALLSTATE_
UNKNOWN | CLDSMT_
CALL_WAITING_STATE
with extended reason = REFER

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = B
dwReason = Direct
dwOrigin =LINECALL
ORIGIN_INTERNAL

NewCallEvent should be
{calling=B, called=C, LRP=A,
origCalled=C, reason=REFER}

LINECALLSTATE_OFFERING

TAPI CallInfo
dwCallerID = B
dwCalledID = C
dwRedirectingID = A
dwRedirectionID = C
dwConnectedID = “”
dwReason =LINECALL
REASON_UNKNOWN with
extended REFER
dwOrigin = LINECALL
ORIGIN_INTERNAL

C answers the call and Refer is
successful

LINECALLSTATE_IDLE with
extended REFER reason

CallPartyInfoChangedEvent @
B with {calling=B, called=C,
LRP=A, origCalled=C,
reason=REFER}

TAPI callInfo
dwCallerID = B
dwCalledID = B
dwRedirectingID = A
dwRedirectionID = C
dwConnectedID = C
dwReason = DIRECT
dwOrigin = LINECALL
ORIGIN_INTERNAL

LINECALLSTATE_CONNEC
TED

TAPI callInfo
dwCallerID = B
dwCalledID = C
dwRedirectingID = A
dwRedirectionID = C
dwConnectedID = B
dwReason = LINECALL
REASON_UNKNOWN with
extended REFER
dwOrigin = LINECALL
ORIGIN_INTERNAL
4-60
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
In-Dialog Refer Where ReferToTarget Redirects the Call in Offering State

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@Referree (B)

CallState/CallInfo
@Refer-to-Target (C)

Referrer (A), Referee (B), and
Refer-to-Target (C) are present
in Cisco Unified CallManager
cluster and CTI is monitoring
those lines.

A-->B has a call in connected
state. The call party information
at A should be {calling=A,
called=B, LRP=null,
origCalled=B, reason=direct}

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = B
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL

A-->B has a call in connected
state. The call party information
at B should be {calling=A,
called=B, LRP=null,
origCalled=B, reason=direct}

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = A
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL

(A) initiates REFER (B) to (C) A gets LINECALLSTATE_
UNKNOWN | CLDSMT_
CALL_WAITING_STATE
with extended reason = REFER

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = B
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL

B gets CPIC with (calling = B,
called = C, ocdpn=C, LRP = A,
reason = REFER, call state =
Ringback)

TAPI CallInfo
dwCallerID = B
dwCalledID = C
dwRedirectingID = A
dwRedirectionID = C
dwConnectedID = null
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL

NewCallEvent should be
{calling=B, called=C, LRP=A,
origCalled=C, reason=REFER}

LINECALLSTATE_OFFERING

TAPI callInfo
dwCallerID = B
dwCalledID = C
dwRedirectingID = A
dwRedirectionID = C
dwConnectedID = null
dwReason = LINECALL
REASON_UNKNOWN with
extended REFER
dwOrigin = LINECALL
ORIGIN_INTERNAL

C Redirects the call to D in
offering state and D answers

LINECALLSTATE_IDLE with
extended reason = REFER

(REFER considered as
successful when D answers)

CallPartyInfoChangedEvent @
B with {calling=B, called=D,
LRP=C, origCalled=C,
reason=Redirect}

Callstate = connected

TAPI callInfo
dwCallerID = B
dwCalledID = B
dwRedirectingID = C
dwRedirectionID = D
dwConnectedID = D
dwReason = DIRECT
dwOrigin = LINECALL
ORIGIN_INTERNAL

IDLE with reason = Redirect

TAPI LINECALLSTATE_IDLE

D will get NewCallEvent with
reason = Redirect call info same
as B’s call info. (calling=B,
called=D, ocdpn = C, LRP = C,
reason = redirect)

Offering/accepted/connected
4-61
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
In-Dialog Refer Where Refer Fails / Refer to Target is Busy

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@Referree (B)

CallState/CallInfo
@Refer-to-Target (C)

Referrer (A), Referee (B,) and
Refer-to-Target (C) are present
in Cisco Unified CallManager
cluster and CTI is monitoring
those lines.

A-->B has a call in connected
state. The call party information
at A should be {calling=A,
called=B, LRP=null,
origCalled=B, reason=direct}

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = B
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL

A-->B has a call in connected
state. The call party information
at B should be {calling=A,
called=B, LRP=null,
origCalled=B, reason=direct}

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = A
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL

(A) initiates REFER (B) to (C) A gets LINECALLSTATE_
UNKNOWN | CLDSMT_
CALL_WAITING_STATE with
extended reason = REFER

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = B
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL

No change

C is busy / C does not answer A gets LINECALLSTATE_
CONNECTED with extended
reason = REFER

(REFER considered as failed)

If B goes to ringback when call
is offered to C (C does not
answer finally) it should also
receive Connected Call State
and CPIC event

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = A
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL
4-62
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Out-of-Dialog Refer

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@Referree (B)

CallState/CallInfo
@Refer-to-Target (C)

Referrer (A), Referee (B,) and
Refer-to-Target (C) are present in
Cisco Unified CallManager
cluster and CTI is monitoring
those lines.

There is no preexisting call
between A and B.

There is no preexisting call
between A and B.

A initiates REFER B to (C). B should get NewCallEvent
with call info as {calling=A,
called=B, LRP=null,
origCalled=B, reason=REFER}

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = A
dwReason = LINECALL
REASON_ UNKNOWN
with extended REFER
dwOrigin =LINECALL
ORIGIN_EXTERNAL

B answers Call state = connected (there
will not be media flowing
between A and B when call goes
to connected state)

TAPI CallInfo (no change)

Cisco Unified CallManager
redirects the call to C

CallPartyInfoChangedEvent @
B with {calling=B, called=C,
LRP=A, origCalled=C,
reason=REFER}

TAPI callInfo
dwCallerID = B
dwCalledID = B
dwRedirectingID = A
dwRedirectionID = C
dwConnectedID = C
dwReason = LINECALL
REASON_ UNKNOWN with
extended REFER
dwOrigin = LINECALL
ORIGIN_EXTERNAL

NewCallEvent should be
{calling=B, called=C, LRP=A,
origCalled=C, reason=REFER}
This info is exactly same as
though caller (A) performed
REDIRECT operation (except
the reason is different here).

TAPI callInfo
dwCallerID = B
dwCalledID = C
dwRedirectingID = A
dwRedirectionID = C
dwConnectedID = B
dwReason = LINECALL
REASON_ UNKNOWN with
extended REFER
dwOrigin = LINECALL
ORIGIN_INTERNAL
4-63
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Invite with Replace for Confirmed Dialog

Preconditions

A, B, and C are inside Cisco Unified CallManager. There is a confirmed dialog between A and B.
C initiates Invite to A with replace B's dialog id

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@Referree (B)

CallState/CallInfo
@Refer-to-Target (C)

Confirmed dialog between A and
B

Call State = connected,
Caller=A,
Called=B,
Connected=B,
Reason =direct,
gcid = GC1

Call State = connected
Caller=A,
Called=B,
Connected=A,
Reason =direct,
gcid = GC1

C Invites A by replacing B’s
dialog

NewCall at C gcid = GC2,
reason=REPLACEs,
Call state = Dialing,
Caller=C,
Called=null,
Reason = REPLACEs

Cisco Unified CallManager
joins A and C in a call and
disconnects call leg @ B

GCID Changed to GC2,
Reason = REPLACEs

CPIC Caller = C,
Called = A,
ocdpn = A,
LRP = B
Reason = REPLACEs

Callstate = connected

TAPI callinfo
caller=C,
called=B,
connected=C,
redirecting=B,
redirection=A,
reason=DIRECT with extended
REPLACEs,
callID=GC2

Call State = IDLE,
extended reason = REPLACEs

CPIC changed

Caller = C,
Called = A,
ocdpn = A,
LRP = B,
Reason=REPLACEs

CallState = connected

TAPI callinfo
Caller=C,
Called=A,
Connected=A,
Redirecting=B,
Redirection=A,
reason=UNKNOWN with
extended REPLACEs,
callID=GC2
4-64
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Refer with Replace for All in Cluster

Preconditions

There is a confirmed dialog between A and B and A and C.

A initiates Refer to C with replace B’s dialog id.

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@Referree (B)

CallState/CallInfo
@Refer-to-Target (C)

dialog between A and B and
dialog between A and C

Call State = onhold,
GC1,
Caller=A,
Called=C,
Connected=C,
Reason =direct

CallState = connected,
GC2,
Caller = A,
Called = B,
Connected=B,
Reason =direct

Call State = connected
Caller=A,
Called=B,
Connected=A,
Reason =direct,
gcid = GC2

Call State = connected
Caller=A,
Called=C,
Connected=A,
Reason =direct,
gcid = GC1

A completes Refer to C
replacing A->B’s dialog (B is
refer to target)

From CTI (callState = IDLE
with reason = TRANSFER.)

TAPI call state IDLE with
Reason = DIRECT with
extended reason TRANSFER

GCID changed from
CTI reason = TRANSFER

CPIC Changed from CTI
Caller=B,
Called=C,
Origcalled = C,
LRP=A,
Reason=TRANSFER

TAPI callinfo
Caller=B,
Called=B,
Connected = C,
Redirecting=A,
Redirection=C,
Reason = DIRECT with
extended reason TRANSFER.
CallId=GC1

CPIC Changed from CTI with
Caller=B,
Called=C,
Origcalled = C,
LRP=A,
Reason=TRANSFER

TAPI callinfo caller=B,
called=C, connected=B,
redirecting=A, redirection=C,
reason=direct with extended
TRANSFER. callId=GC1
4-65
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
Refer with Replace for All in Cluster, Replace Dialog Belongs to Another Station

Preconditions

A is Referrer, D is Referee, and C is Refer-to-Target.

There is a confirmed dialog between A(d1) and B & C(d2) and D.

A initiates Refer to D on (d1) with Replaces (d2).

3XX scenario

Preconditions

Application is monitoring B.

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@B

CallState/CallInfo
@Refer-to-Target (C)

CallState/CallInfo
@Referree (D)

Dialog between A and
B and dialog between C
and D

Call State = onhold,

Caller=A,
Called=B,
Connected=B,
Reason =direct,
gcid=GC1

Call State = connected

Caller=A,
Called=B,
Connected=A,
Reason =direct,
gcid = GC1

Call State = connected

Caller=C,
Called=D,
Connected=D,
Reason =direct,
gcid = GC2

Call State = connected

Caller=C,
Called=D,
Connected=C,
Reason =direct,
gcid = GC2

A initiates Refer to D
on (d1) with Replaces
(d2)

From CTI
(callState = IDLE with
reason = REFER.)

TAPI call state IDLE with
reason = DIRECT with
extended reason = REFER

CPIC Changed from CTI
Caller=B,
Called=C,
Origcalled = D,
LRP=C,
Reason=REPLACEs

TAPI callinfo
Caller=B,
Called=B,
Connected = D,
Redirecting=C,
Redirection=D,
Reason=DIRECT with
extended REPLACEs,
CallId=GC1

From CTI
(callState = IDLE with
reason = REPLACEs.)

TAPI call state IDLE with
reason = DIRECT with
extended reason =
REPLACEs

GCID changed from CTI
to GC1

CPIC Changed from CTI
with
Caller=B (referee),
Called=D,
Origcalled = D,
LRP=C,
Reason=REPLACEs

TAPI callinfo
caller=B,
called=D,
connected=B,
redirecting=C,
redirection=D,
reason=DIRECT with
extended REPLACEs,
callId=GC1

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@Referree (B)

CallState/CallInfo
@Refer-to-Target (C)

A calls external SIP phone which
has CFDUNC set to B

TSPI: LINE_APPNEWCALL

Reason = LINECALL
REASON_REDIRECT
4-66
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
SRTP Scenario

Media Terminate by Application (open secure CTI port or RP)

• Negotiate version

• Sends LineOpen with extension version as 0x8007000

• Send CciscoLineDevSpecificUserSetSRTPAlgorithmID

• Send CCiscoLineDevSpecificUserControlRTPStream

• Now the CTI port or RP is registered as secure port

• Make call from secure IP phone to the CTI port or RP port

• Answer the call from application

• SRTP indication will be reported as LineDevSpecific event

• SRTP key information will be stored in LINECALLINFO::devSpecifc for retrieval

Media Terminate by TSP Wave Driver (open secure CTI port)

• Negotiate version

• Sends LineOpen with extension version as 0x4007000

• Send CciscoLineDevSpecificUserSetSRTPAlgorithmID

• Send CciscoLineDevSpecificSendLineOpen

• Now the CTI port is registered as secure port

• Make call from secure IP phone to the CTI port

• Answer the call from application

• SRTP indication will be reported as LineDevSpecific event

• SRTP key information will be stored in LINECALLINFO::devSpecifc for retrieval
4-67
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 4 Cisco Device Specific Extensions
 Message Sequence Charts
4-68
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Cisco Unified TAPI Developers G
OL-9442-01
C H A P T E R 5

Cisco Unified TAPI Examples

This chapter provides examples that illustrate how to use the Cisco Unified TAPI implementation.
This chapter includes the following subroutines:

• MakeCall

• OpenLine

• CloseLine

MakeCall
STDMETHODIMP CTACtrl::MakeCall(BSTR destNumber, long pMakeCallReqID, long hLine, BSTR user2user, long
translateAddr) {

AFX_MANAGE_STATE(AfxGetStaticModuleState())

USES_CONVERSION;
tracer->tracef(SDI_LEVEL_ENTRY_EXIT, "CTACtrl::Makecall %s %d %d %s %d\n",

T2A((LPTSTR)destNumber), pMakeCallReqID, hLine, T2A((LPTSTR)user2user),
translateAddr);

//CtPhoneNo m_pno;
 CtTranslateOutput to;

 //LPCSTR pszTranslatable;
CString sDialable;

CString theDestNumber(destNumber);

CtCall* pCall;
CtLine* pLine=CtLine::FromHandle((HLINE)hLine);

if (pLine==NULL) {
tracer->tracef(SDI_LEVEL_ERROR, "CTACtrl::MakeCall : pLine == NULL\n");
return S_FALSE;

} else {
pCall=new CtCall(pLine);
pCall->AddSink(this);

sDialable = theDestNumber;

if (translateAddr) {
//m_pno.SetWholePhoneNo((LPCSTR)theDestNumber);
//pszTranslatable = m_pno.GetTranslatable();
if (TSUCCEEDED(to.TranslateAddress(pCall->GetLine()->GetDeviceID(),

(LPCSTR)theDestNumber))) {
5-1
uide for Cisco Unified CallManager 5.0

Chapter 5 Cisco Unified TAPI Examples
 OpenLine
sDialable = to.GetDialableString();
}

}
TRESULT tr = pCall->MakeCall((LPCSTR)sDialable, 0, this);
if(TPENDING(tr) || TSUCCEEDED(tr)) {

//GCGC the correct hCall pointer is not being returned yet
if (translateAddr)

Fire_MakecallReply(hLine, (long)tr, (long)pCall->GetHandle(),
sDialable.AllocSysString());

else
Fire_MakecallReply(hLine, (long)tr, (long)pCall->GetHandle(),destNumber);

return S_OK;
} else {

//GCGC delete the call that was created above.
tracer->tracef(SDI_LEVEL_ERROR, "CTACtrl::MakeCall : pCall->MakeCall failed\n");
delete pCall;
return S_FALSE;

 }
}

}

OpenLine
STDMETHODIMP CTACtrl::OpenLine(long lDeviceID, BSTR lineDirNumber, long lPriviledges,

 long lMediaModes, BSTR receiveIPAddress, long lreceivePort) {
USES_CONVERSION;
tracer->tracef(SDI_LEVEL_ENTRY_EXIT, "CTACtrl::OpenLine %d %s %d %d %s %d\n",

lDeviceID, T2A((LPTSTR)lineDirNumber), lPriviledges, lMediaModes,
T2A((LPTSTR)receiveIPAddress), lreceivePort);

int lineID;
TRESULT tr;
CString strReceiveIP(receiveIPAddress);

 CString strReqAddress(lineDirNumber);

//bool bTermMedia=((!strReceiveIP.IsEmpty()) && (lreceivePort!=0));
bool bTermMedia=(((lMediaModes & LINEMEDIAMODE_AUTOMATEDVOICE) != 0) &&

(lreceivePort!=0) && (!strReceiveIP.IsEmpty()));
CtLine* pLine;

AFX_MANAGE_STATE(AfxGetStaticModuleState())

tracer->tracef(SDI_LEVEL_DETAILED, "TAC: --> OpenLine()\n");

if ((lDeviceID<0) && !strcmp((char *)lineDirNumber, "")) {
tracer->tracef(SDI_LEVEL_ERROR, "TCD: error - bad device ID and no dirn to open\n");
return S_FALSE;

}
lineID=lDeviceID;

if (lDeviceID<0) {
//search for line ID in list of lines.

 CtLineDevCaps ldc;
int numLines=::TfxGetNumLines();
for(DWORD nLineID = 0; (int)nLineID < numLines; nLineID++) {

if(/*ShouldShowLine(nLineID) &&*/ TSUCCEEDED(ldc.GetDevCaps(nLineID))) {
CtAddressCaps ac;
tracer->tracef(SDI_LEVEL_DETAILED, "CTACtrl::OpenLine :

Calling ac.GetAddressCaps %d 0\n", nLineID);
if (TSUCCEEDED(ac.GetAddressCaps(nLineID, 0))) {
5-2
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 5 Cisco Unified TAPI Examples
 OpenLine
// GCGC only one address supported
 CString strCurrAddress(ac.GetAddress());
 if (strReqAddress==strCurrAddress) {

lineID=nLineID;
break;

 }
}

} else {
tracer->tracef(SDI_LEVEL_ERROR, "TAC: error - GetAddressCaps() failed\n");

}
}

}

if (lDeviceID<0) {
tracer->tracef(SDI_LEVEL_ERROR,

"TAC: error - could not find dirn %s to open line.\n",(LPCSTR)lineDirNumber);
return S_FALSE;

}

// if we are to do media termination; negotiate the extensions version

DWORD retExtVersion;
if (bTermMedia) {

TRESULT tr3;
tracer->tracef(SDI_LEVEL_DETAILED,

"TAC: lineNegotiateExtVersion - appHandle = %d, deviceID = %d, API ver = %d,
HiVer = %d, LoVer = %d\n", CtLine::GetAppHandle(), lineID,
CtLine::GetApiVersion(lineID),
0x80000000 | 0x00010000L,
0x80000000 | 0x00020000L);

tr3=::lineNegotiateExtVersion(CtLine::GetAppHandle(),
lineID, CtLine::GetApiVersion(lineID),
0x80000000 | 0x00010000L, // TAPI v1.3,
0x80000000 | 0x00020000L,
&retExtVersion);

tracer->tracef(SDI_LEVEL_DETAILED,
"TAC: lineNegotiateExtVersion returned: %d\n", tr3);

}

pLine=new CtLine();
tr=pLine->Open(lineID, this, lPriviledges, lMediaModes);
if(TSUCCEEDED(tr)) {

if (bTermMedia) {
if (retExtVersion==0x10000) {

CiscoLineDevSpecificUserControlRTPStream dsucr;
dsucr.m_RecievePort=lreceivePort;
dsucr.m_RecieveIP=::inet_addr((LPCSTR)strReceiveIP);
TRESULT tr2;

tr2=::lineDevSpecific(pLine->GetHandle(),
0,0, dsucr.lpParams(),dsucr.dwSize());

 tracer->tracef(SDI_LEVEL_DETAILED,
"TAC: lineDevSpecific returned: %d\n", tr2);

} else {
//GCGC here put in the new calls to set the media types!
CiscoLineDevSpecificUserControlRTPStream2 dsucr;
dsucr.m_RecievePort=lreceivePort;
dsucr.m_RecieveIP=::inet_addr((LPCSTR)strReceiveIP);
dsucr.m_MediaCapCount=4;

dsucr.m_MediaCaps[0].MediaPayload=4;
dsucr.m_MediaCaps[0].MaxFramesPerPacket=30;
dsucr.m_MediaCaps[0].G723BitRate=0;
5-3
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 5 Cisco Unified TAPI Examples
 OpenLine
dsucr.m_MediaCaps[1].MediaPayload=9;
dsucr.m_MediaCaps[1].MaxFramesPerPacket=90;
dsucr.m_MediaCaps[1].G723BitRate=1;
dsucr.m_MediaCaps[2].MediaPayload=9;
dsucr.m_MediaCaps[2].MaxFramesPerPacket=90;
dsucr.m_MediaCaps[2].G723BitRate=2;
dsucr.m_MediaCaps[3].MediaPayload=11;
dsucr.m_MediaCaps[3].MaxFramesPerPacket=90;
dsucr.m_MediaCaps[3].G723BitRate=0;

TRESULT tr2;

tr2=::lineDevSpecific(pLine->GetHandle(),
0,0, dsucr.lpParams(),dsucr.dwSize());

 tracer->tracef(SDI_LEVEL_DETAILED,
"TAC: lineDevSpecific returned: %d\n", tr2);

}
}

CtAddressCaps ac;
LPCSTR pszAddressName;
if (TSUCCEEDED(ac.GetAddressCaps(lineID, 0))) {

// GCGC only one address supported
 pszAddressName = ac.GetAddress();

} else {
pszAddressName = NULL;

 tracer->tracef(SDI_LEVEL_ERROR, "TAC: error - GetAddressCaps() failed.\n");
}

OpenedLine((long)pLine->GetHandle(), pszAddressName, 0);

// now let's try to open the associated phone device
// Get the phone from the line

DWORDnPhoneID;
bool b_phoneFound=false;
CtDeviceID did;

 if((m_bUsesPhones) && TSUCCEEDED(did.GetID("tapi/phone", pLine->GetHandle()))) {
 nPhoneID = did.GetDeviceID();

tracer->tracef(SDI_LEVEL_DETAILED,
"TAC: Retrieved phone device %d for line.\n",nPhoneID);

// check to see if phone device is already open

long hPhone;
CtPhone* pPhone;
if (!m_deviceID2phone.Lookup((long)nPhoneID,hPhone)) {

tracer->tracef(SDI_LEVEL_SIGNIFICANT,
"TAC: phone device not found in open list, opening it...\n");

pPhone=new CtPhone();
TRESULT tr_phone;
tr_phone=pPhone->Open(nPhoneID,this);
if (TSUCCEEDED(tr_phone)) {

::phoneSetStatusMessages(pPhone->GetHandle(),
PHONESTATE_DISPLAY | PHONESTATE_LAMP |
PHONESTATE_HANDSETHOOKSWITCH | PHONESTATE_HEADSETHOOKSWITCH |
PHONESTATE_REINIT | PHONESTATE_CAPSCHANGE | PHONESTATE_REMOVED,
PHONEBUTTONMODE_KEYPAD | PHONEBUTTONMODE_FEATURE |
PHONEBUTTONMODE_CALL |
PHONEBUTTONMODE_LOCAL | PHONEBUTTONMODE_DISPLAY,
PHONEBUTTONSTATE_UP | PHONEBUTTONSTATE_DOWN);

m_phone2line.SetAt((long)pPhone->GetHandle(), (long)pLine->GetHandle());
m_line2phone.SetAt((long)pLine->GetHandle(),(long)pPhone->GetHandle());
m_deviceID2phone.SetAt((long)nPhoneID,(long)pPhone->GetHandle());
5-4
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 5 Cisco Unified TAPI Examples
 CloseLine
m_phoneUseCount.SetAt((long)pPhone->GetHandle(), 1);
} else {

tracer->tracef(SDI_LEVEL_ERROR,
"TAC: error - phoneOpen failed with code %d\n", tr_phone);

}
} else {

pPhone=CtPhone::FromHandle((HPHONE)hPhone);
long theCount;

if (m_phoneUseCount.Lookup((long)pPhone->GetHandle(),theCount))
m_phoneUseCount.SetAt((long)pPhone->GetHandle(), theCount+1);

else {
//GCGC this would be an error condition!
tracer->tracef(SDI_LEVEL_ERROR,

"TAC: error - m_phoneUseCount does not contain phone entry.\n");
}

}
} else {

tracer->tracef(SDI_LEVEL_ERROR,
"TAC: error - could not retrieve PhoneID for line.\n");

}
tracer->tracef(SDI_LEVEL_DETAILED, "TAC: <-- OpenLine()\n");
return S_OK;

} else {
tracer->tracef(SDI_LEVEL_ERROR, "TAC: error - lineOpen failed: %d\n", tr);
tracer->tracef(SDI_LEVEL_DETAILED, "TAC: <-- OpenLine()\n");
OpenLineFailed(tr,0);
delete pLine;
return S_FALSE;

}
}

CloseLine
STDMETHODIMP CTACtrl::CloseLine(long hLine) {

AFX_MANAGE_STATE(AfxGetStaticModuleState())

tracer->tracef(SDI_LEVEL_ENTRY_EXIT, "CTACtrl::CloseLine %d\n", hLine);

CtLine* pLine;
pLine=CtLine::FromHandle((HLINE) hLine);

if (pLine!=NULL) {
// close the line
pLine->Close();
// remove it from the list
delete pLine;
long hPhone;
long theCount;
if ((m_bUsesPhones) && (m_line2phone.Lookup(hLine,hPhone))) {

CtPhone* pPhone=CtPhone::FromHandle((HPHONE)hPhone);
if (pPhone!=NULL) {

if (m_phoneUseCount.Lookup(hPhone,theCount))
if (theCount>1) {

// decrease the number of lines using this phone
m_phoneUseCount.SetAt(hPhone,theCount-1);

}
else {

//nobody else is using this phone, so let's remove it.
m_deviceID2phone.RemoveKey((long)pPhone->GetDeviceID());
5-5
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Chapter 5 Cisco Unified TAPI Examples
 CloseLine
m_phone2line.RemoveKey(hPhone);
m_phoneUseCount.RemoveKey(hPhone);

//now let's close the phone
pPhone->Close();

}
}
//either way, remove the map entry from line to phone.
m_line2phone.RemoveKey(hLine);

}
return S_OK;

}
else
return S_FALSE;

}

5-6
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Cisco Unified TAPI Developers G
OL-9442-01
A P P E N D I X A

Cisco Unified TSP Interfaces

This appendix contains a listing of APIs that are supported and not supported.

Cisco Unified TAPI Version 2.1 Interfaces

Core Package
Table A-1 lists each TAPI interface

Table A-1 Compliance to TAPI 2.1

API/Message/Structure

Cisco
TAPI
Support Comments

TAPI Line Functions

lineAccept Yes

lineAddProvider Yes

lineAddToConference Yes

lineAnswer Yes

lineBlindTransfer Yes

lineCallbackFunc Yes

lineClose Yes

lineCompleteCall No

lineCompleteTransfer Yes

lineConfigDialog No

lineConfigDialogEdit No

lineConfigProvider Yes

lineDeallocateCall Yes

lineDevSpecific Yes

lineDevSpecificFeature No

lineDial Yes
A-1
uide for Cisco Unified CallManager 5.0

Appendix A Cisco Unified TSP Interfaces
 Cisco Unified TAPI Version 2.1 Interfaces
lineDrop Yes

lineForward Yes

lineGatherDigits No

lineGenerateDigits Yes

lineGenerateTone Yes

lineGetAddressCaps Yes

lineGetAddressID Yes

lineGetAddressStatus Yes

lineGetAppPriority No

lineGetCallInfo Yes

lineGetCallStatus Yes

lineGetConfRelatedCalls Yes

lineGetCountry No

lineGetDevCaps Yes

lineGetDevConfig No

lineGetIcon No

lineGetID Yes

lineGetLineDevStatus Yes

lineGetMessage Yes

lineGetNewCalls Yes

lineGetNumRings Yes

lineGetProviderList Yes

lineGetRequest Yes

lineGetStatusMessages Yes

lineGetTranslateCaps Yes

lineHandoff Yes

lineHold Yes

lineInitialize Yes

lineInitializeEx Yes

lineMakeCall Yes

lineMonitorDigits Yes

lineMonitorMedia No

lineMonitorTones Yes

lineNegotiateAPIVersion Yes

lineNegotiateExtVersion Yes

Table A-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
A-2
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Appendix A Cisco Unified TSP Interfaces
 Cisco Unified TAPI Version 2.1 Interfaces
lineOpen Yes

linePark Yes

linePickup No

linePrepareAddToConference Yes

lineRedirect Yes

lineRegisterRequestRecipient Yes

lineReleaseUserUserInfo No

lineRemoveFromConference No

lineRemoveProvider Yes

lineSecureCall No

lineSendUserUserInfo No

lineSetAppPriority Yes

lineSetAppSpecific No

lineSetCallData No

lineSetCallParams No

lineSetCallPrivilege Yes

lineSetCallQualityOfService No

lineSetCallTreatment No

lineSetCurrentLocation No

lineSetDevConfig No

lineSetLineDevStatus No

lineSetMediaControl No

lineSetMediaMode No

lineSetNumRings Yes

lineSetStatusMessages Yes

lineSetTerminal No

lineSetTollList Yes

lineSetupConference Yes

lineSetupTransfer Yes

lineShutdown Yes

lineSwapHold No

lineTranslateAddress Yes

lineTranslateDialog Yes

lineUncompleteCall No

lineUnhold Yes

Table A-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
A-3
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Appendix A Cisco Unified TSP Interfaces
 Cisco Unified TAPI Version 2.1 Interfaces
lineUnpark Yes

TAPI Line Messages

LINE_ADDRESSSTATE Yes

LINE_APPNEWCALL Yes

LINE_CALLINFO Yes

LINE_CALLSTATE Yes

LINE_CLOSE Yes

LINE_CREATE Yes

LINE_DEVSPECIFIC Yes

LINE_DEVSPECIFICFEATURE No

LINE_GATHERDIGITS Yes

LINE_GENERATE Yes

LINE_LINEDEVSTATE Yes

LINE_MONITORDIGITS Yes

LINE_MONITORMEDIA No

LINE_MONITORTONE Yes

LINE_REMOVE Yes

LINE_REPLY Yes

LINE_REQUEST Yes

TAPI Line Structures

LINEADDRESSCAPS Yes

LINEADDRESSSTATUS Yes

LINEAPPINFO Yes

LINECALLINFO Yes

LINECALLLIST Yes

LINECALLPARAMS Yes

LINECALLSTATUS Yes

LINECALLTREATMENTENTRY No

LINECARDENTRY Yes

LINECOUNTRYENTRY Yes

LINECOUNTRYLIST Yes

LINEDEVCAPS Yes

LINEDEVSTATUS Yes

LINEDIALPARAMS No

LINEEXTENSIONID Yes

Table A-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
A-4
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Appendix A Cisco Unified TSP Interfaces
 Cisco Unified TAPI Version 2.1 Interfaces
LINEFORWARD Yes

LINEFORWARDLIST Yes

LINEGENERATETONE Yes

LINEINITIALIZEEXPARAMS Yes

LINELOCATIONENTRY Yes

LINEMEDIACONTROLCALLSTATE No

LINEMEDIACONTROLDIGIT No

LINEMEDIACONTROLMEDIA No

LINEMEDIACONTROLTONE No

LINEMESSAGE Yes

LINEMONITORTONE Yes

LINEPROVIDERENTRY Yes

LINEPROVIDERLIST Yes

LINEREQMEDIACALL No

LINEREQMAKECALL Yes

LINETERMCAPS No

LINETRANSLATECAPS Yes

LINETRANSLATEOUTPUT Yes

TAPI Phone Functions

phoneCallbackFunc Yes

phoneClose Yes

phoneConfigDialog No

phoneDevSpecific Yes

phoneGetButtonInfo No

phoneGetData No

phoneGetDevCaps Yes

phoneGetDisplay Yes

phoneGetGain No

phoneGetHookSwitch No

phoneGetIcon No

phoneGetID No

phoneGetLamp No

phoneGetMessage Yes

phoneGetRing Yes

phoneGetStatus No

Table A-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
A-5
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Appendix A Cisco Unified TSP Interfaces
 Cisco Unified TAPI Version 2.1 Interfaces
phoneGetStatusMessages Yes

phoneGetVolume No

phoneInitialize Yes

phoneInitializeEx Yes

phoneNegotiateAPIVersion Yes

phoneNegotiateExtVersion No

phoneOpen Yes

phoneSetButtonInfo No

phoneSetData No

phoneSetDisplay Yes

phoneSetGain No

phoneSetHookSwitch No

phoneSetLamp No

phoneSetRing No

phoneSetStatusMessages Yes

phoneSetVolume No

phoneShutdown Yes

TAPI Phone Messages

PHONE_BUTTON Yes

PHONE_CLOSE Yes

PHONE_CREATE Yes

PHONE_DEVSPECIFIC No

PHONE_REMOVE Yes

PHONE_REPLY Yes

PHONE_STATE Yes

TAPI Phone Structures

PHONEBUTTONINFO No

PHONECAPS Yes

PHONEEXTENSIONID No

PHONEINITIALIZEEXPARAMS Yes

PHONEMESSAGE Yes

PHONESTATUS No

VARSTRING Yes

TAPI Assisted Telephony Functions

tapiGetLocationInfo Yes

Table A-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
A-6
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Appendix A Cisco Unified TSP Interfaces
 Cisco Unified TAPI Version 2.1 Interfaces
tapiRequestDrop No

tapiRequestMakeCall Yes

tapiRequestMediaCall No

TAPI Call Center Functions

lineAgentSpecific No

lineGetAgentActivityList No

lineGetAgentCaps No

lineGetAgentGroupList No

lineGetAgentStatus No

lineProxyMessage No

lineProxyResponse No

lineSetAgentActivity No

lineSetAgentGroup No

lineSetAgentState No

TAPI Call Center Messages

LINE_AGENTSPECIFIC No

LINE_AGENTSTATUS No

LINE_PROXYREQUEST No

TAPI Call Center Structures

LINEAGENTACTIVITYENTRY No

LINEAGENTACTIVITYLIST No

LINEAGENTCAPS No

LINEAGENTGROUPENTRY No

LINEAGENTGROUPLIST No

LINEAGENTSTATUS No

LINEPROXYREQUEST No

Wave Functions

waveInAddBuffer Yes

waveInClose Yes

waveInGetDevCaps No

waveInGetErrorText No

waveInGetID Yes

waveInGetNumDevs No

waveInGetPosition Yes

waveInMessage No

Table A-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
A-7
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Appendix A Cisco Unified TSP Interfaces
 Cisco Unified TAPI Version 2.1 Interfaces
waveInOpen Yes

waveInPrepareHeader Yes

waveInProc No

waveInReset Yes

waveInStart Yes

waveInStop No

waveInUnprepareHeader Yes

waveOutBreakLoop No

waveOutClose Yes

waveOutGetDevCaps Yes

waveOutGetErrorText No

waveOutGetID Yes

waveOutGetNumDevs No

waveOutGetPitch No

waveOutGetPlaybackRate No

waveOutGetPosition No

waveOutGetVolume No

waveOutMessage No

waveOutOpen Yes

waveOutPause No

waveOutPrepareHeader Yes

waveOutProc No

waveOutReset Yes

waveOutRestart No

waveOutSetPitch No

waveOutSetPlaybackRate No

waveOutSetVolume No

waveOutUnprepareHeader Yes

waveOutWrite Yes

Table A-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
A-8
Cisco Unified TAPI Developers Guide for Cisco Unified CallManager 5.0

OL-9442-01

Cisco Unified TAPI Developers Gui
OL-9442-01
I N D E X
A

AVAudio32.dll 3-148

B

Button ID values, defined by TAPI 3-135

button press monitoring 3-134

C

call control 1-2

CCiscoLineDevSpecificSetStatusMsgs 4-16

CiscoLineDevSpecificMsgWaiting class 4-12, 4-13

Cisco Unified CallManager JTAPI

classes and interfaces A-1

Cisco Unified TSP

activating 2-3

configuration settings

Advanced tab (figure) 2-12

CTI Manager tab (figure) 2-7

CTI Manager tab (table) 2-8

general tab (figure) 2-5

Language tab (figure) 2-13

overview 2-5

Trace tab (figure) 2-10

user tab (figure) 2-6

user tab (table) 2-7

Wave tab (figure) 2-8

Wave tab (table) 2-9

configuring 2-4

installing 2-2

installing the wave driver 2-13
managing 2-20

reinstalling 2-20

removing 2-19

setting up the client-server configuration 2-17

uninstalling 2-23

uninstalling the wave driver 2-18

upgrading 2-20

verifying the installation 2-16

classes

Audio Stream Control 4-14

CCiscoLineDevSpecificJoin 4-23

CCiscoLineDevSpecificPortRegistrationPerCall 4-18

CCiscoLineDevSpecificRedirectResetOrigCalled 4-18

CCiscoLineDevSpecificRedirectSetOrigCalled 4-22

CiscoLineDevSpecific 4-10

CiscoLineDevSpecificUserControlRTPStream 4-14

Join 4-23

Message Waiting 4-12

Message Waiting Dirn 4-13

Port Registration per Call 4-18

Redirect Reset Original Called ID 4-18

Redirect Set Original Called ID 4-22

Set Status Messages 4-16

Setting RTP Params for Call 4-21

Swap-Hold/SetupTransfer 4-17

CloseLine 5-5

Cluster Support 1-3

Code samples

CloseLine 5-5

MakeCall 5-1

OpenLine 5-2

configuring

Cisco Unified TSP 2-4
IN-1
de for Cisco Unified CallManager 5.0

Index
client-server configuration using
Cisco Unified TSP 2-17

TSP 2-4

CTI

call survivability 1-5

Cisco TAPI application failure 1-5

Cisco Unified CallManager failure 1-4

manager 1-3

manager failure 1-5

port 1-2

route point 1-3

D

directory change notification handling 1-8

E

examples

CloseLine 5-5

MakeCall 5-1

OpenLine 5-2

Extension Mobility 1-8

extension mobility support 1-8

extensions

Cisco line device specific TAPI functions 4-1

Cisco phone device specific TAPI functions 4-31

LINEDEVCAPS 4-3

structures 4-3

F

fault tolerance 1-3

first party call control 1-2

flags for opening the device 3-151

Formats supported by TAPI wave driver 3-156

forwarding enhancement 1-6

functions

phone functions 3-115
IN-2
Cisco Unified TAPI Developers Guide for Cisco Unified CallManag
L

line device structures

LINEADDRESSCAPS 3-72

LINEADDRESSSTATUS 3-79

LINEAPPINFO 3-80

LINECALLINFO 3-81

LINECALLLIST 3-87

LINECALLPARAMS 3-88

LINECALLSTATUS 3-89

LINECARDENTRY 3-92

LINECOUNTRYENTRY 3-94

LINECOUNTRYLIST 3-95

LINEDEVCAPS 3-96

LINEDEVSTATUS 3-100

LINEEXTENSIONID 3-101

LINEFORWARD 3-101

LINEFORWARDLIST 3-104

LINEGENERATETONE 3-104

LINEINITIALIZEEXPARAMS 3-105

LINELOCATIONENTRY 3-106

LINEMESSAGE 3-108

LINEMONITORTONE 3-109

LINEPROVIDERENTRY 3-109

LINEPROVIDERLIST 3-110

LINEREQMAKECALL 3-111

LINETRANSLATECAPS 3-112

LINETRANSLATEOUTPUT 3-113

line functions

lineAccept 3-4

lineAddProvider 3-4

lineAddToConference 3-5

lineAnswer 3-6

lineBlindTransfer 3-6

lineCallbackFunc 3-7

lineClose 3-8

lineCompleteTransfer 3-9

lineConfigProvider 3-10

lineDeallocateCall 3-11
er 5.0
OL-9442-01

Index
lineDevSpecific 3-11

lineDial 3-12

lineDrop 3-13

lineForward 3-14

lineGenerateDigits 3-16

lineGenerateTone 3-17

lineGetAddressCaps 3-18

lineGetAddressID 3-19

lineGetAddressStatus 3-20

lineGetCallInfo 3-20

lineGetCallStatus 3-21

lineGetConfRelatedCalls 3-21

lineGetDevCaps 3-21, 3-22

lineGetID 3-23

lineGetLineDevStatus 3-24

lineGetMessage 3-25

lineGetNewCalls 3-26

lineGetNumRings 3-27

lineGetProviderList 3-28

lineGetRequest 3-28

lineGetStatusMessages 3-29

lineGetTranslateCaps 3-30

lineHandoff 3-31

lineHold 3-32

lineInitialize 3-33

lineInitializeEx 3-34

lineMakeCall 3-35

lineMonitorDigits 3-36

lineMonitorTones 3-36

lineNegotiateAPIVersion 3-37

lineNegotiateExtVersion 3-38

lineOpen 3-39

linePark 3-40

linePrepareAddToConference 3-41

lineRedirect 3-43

lineRegisterRequestRecipient 3-44

lineRemoveProvider 3-45

lineSetAppPriority 3-45

lineSetCallPrivilege 3-47
Cisco Unifi
OL-9442-01
lineSetNumRings 3-47

lineSetStatusMessages 3-48

lineSetTollList 3-50

lineSetupConference 3-51

lineSetupTransfer 3-52

lineShutdown 3-52

lineTranslateAddress 3-53

lineTranslateDialog 3-54

lineUnhold 3-56

lineUnpark 3-56

line messages

LINE_ADDRESSSTATE 3-57

LINE_APPNEWCALL 3-59

LINE_CALLINFO 3-59

LINE_CALLSTATE 3-60

LINE_CLOSE 3-63

LINE_CREATE 3-64

LINE_DEVSPECIFIC 3-65

LINE_GENERATE 3-65

LINE_LINEDEVSTATE 3-66

LINE_MONITORTDIGITS 3-67

LINE_MONITORTONE 3-68

LINE_REMOVE 3-69

LINE_REPLY 3-69

LINE_REQUEST 3-70

lines

line functions 3-2

M

MakeCall 5-1

messages

device specific messages 4-35

LINE_DEVSPECIFIC 4-35

line messages 3-57

phone messages 3-133

monitoring call park directory numbers 1-9

monitor privilege 3-128

multiple Cisco Unified TSPs 1-9
IN-3
ed TAPI Developers Guide for Cisco Unified CallManager 5.0

Index
N

new and changed information xv

O

OpenLine 5-2

owner privilege 3-128

P

Phone button values 3-135

phone functions

phoneCallbackFunc 3-115

phoneClose 3-116

phoneDevSpecific 3-117

phoneGetDevCaps 3-117

phoneGetDisplay 3-118

phoneGetLamp 3-119

phoneGetMessage 3-120

phoneGetRing 3-121

phoneGetStatusMessages 3-122

phoneInitialize 3-124

phoneInitializeEx 3-125

phoneNegotiateAPIVersion 3-127

phoneOpen 3-128

phoneSetDisplay 3-129

phoneSetLamp 3-130

phoneSetStatusMessages 3-131

phoneShutdown 3-132

phone messages

PHONE_BUTTON 3-134

PHONE_CLOSE 3-136

PHONE_CREATE 3-137

PHONE_REMOVE 3-137

PHONE_REPLY 3-138

PHONE_STATE 3-139

PHONEPRIVILEGE_MONITOR 3-129

PHONEPRIVILEGE_OWNER 3-129
IN-4
Cisco Unified TAPI Developers Guide for Cisco Unified CallManag
Phone status changes 3-131

phone structure

PHONECAPS 3-141

phone structures

PHONEINITIALIZEEXPARAMS 3-142

PHONEMESSAGE 3-143

R

Ring modes supported 3-121

S

Status changes, phone devices 3-131

structures

line device 3-71

phone structures 3-141

supported device types 1-5

T

TAPI Wave Driver, formats supported 3-151

third party call control 1-2

TSP

activating 2-3

configuration settings

Advanced tab (figure) 2-12

CTI Manager tab (figure) 2-7

CTI Manager tab (table) 2-8

general tab (figure) 2-5

Language tab (figure) 2-13

overview 2-5

Trace tab (figure) 2-10

user tab (figure) 2-6

user tab (table) 2-7

Wave tab (figure) 2-8

Wave tab (table) 2-9

configuring 2-4
er 5.0
OL-9442-01

Index
installing 2-2

installing the wave driver 2-13

managing 2-20

reinstalling 2-20

removing 2-19

setting up client-server configuration 2-17

uninstalling 2-23

uninstalling the wave driver 2-18

upgrading 2-20

verifying the installation 2-16

W

wave driver

installing 2-13

saving information 2-15

uninstalling 2-18

verifying wave driver exists 2-16

wave functions

waveInAddBuffer 3-148

waveInClose 3-149

waveInGetID 3-149

waveInGetPosition 3-150

waveInOpen 3-150

waveInPrepareHeader 3-152

waveInReset 3-152

waveInStart 3-153

waveInUnprepareHeader 3-153

waveOutClose 3-154

waveOutGetDevCaps 3-154

waveOutGetID 3-155

waveOutGetPosition 3-155

waveOutOpen 3-156

waveOutPrepareHeader 3-157

waveOutReset 3-158

waveOutUnprepareHeader 3-158

waveOutWrite 3-159
Cisco Unifi
OL-9442-01
X

xsi object pass through 1-15
IN-5
ed TAPI Developers Guide for Cisco Unified CallManager 5.0

Index
IN-6
Cisco Unified TAPI Developers Guide for Cisco Unified CallManag
er 5.0

OL-9442-01

	Contents
	Preface
	Introduction
	Purpose
	Audience
	Organization
	New and Changed Information
	Related Documentation
	Required Software
	Conventions
	Obtaining Documentation
	Cisco.com
	Documentation DVD
	Ordering Documentation

	Documentation Feedback
	Cisco Product Security Overview
	Reporting Security Problems in Cisco Products

	Obtaining Technical Assistance
	Cisco Technical Support Website
	Submitting a Service Request
	Definitions of Service Request Severity

	Obtaining Additional Publications and Information

	Overview
	Cisco�Unified�TSP 5.0 Functions
	Call Control
	First-Party Call Control
	Third-Party Call Control

	CTI Port
	Dynamic Port Registration
	CTI Route Point
	Media Termination at Route Point
	CTI Manager (Cluster Support)
	Cisco�Unified�CallManager Failure
	Call Survivability
	CTI Manager Failure
	Cisco�Unified�TAPI Application Failure

	Supported Device Types
	Forwarding
	Redirect and Blind Transfer
	lineRedirect
	lineDevSpecific – Redirect Reset Original Called ID
	lineDevSpecific – Redirect Set Original Called ID
	lineDevSpecific – Redirect FAC CMC
	lineBlindTransfer
	lineDevSpecific - BlindTransfer FAC CMC

	Extension Mobility Support
	Directory Change Notification Handling
	Monitoring Call Park Directory Numbers
	Multiple Cisco�Unified�TSPs
	Multiple Calls per Line Appearance
	Maximum Number of Calls
	Busy Trigger
	CFNA Timer

	Shared Line Appearance
	Select Calls
	Direct Transfer
	Join
	Privacy Release
	Barge and cBarge
	Cisco�Unified�TSP Auto Update Functionality
	QoS Support
	Presentation Indication (PI)
	Compatibility
	Unicode Support
	TLS Support
	SRTP Support
	FAC/CMC Support
	CTI Port Third Party Monitoring Port
	CTI Device/Line Restriction
	XSI Object Pass Through

	Cisco�Unified�TAPI Installation
	Introduction
	Installing the Cisco�Unified�TSP
	Activating the Cisco�Unified�TSP
	Configuring the Cisco�Unified�TSP
	Cisco�Unified�TSP Configuration Settings
	General Tab
	User Tab
	CTI Manager Tab
	Wave Tab
	Trace Tab
	Advanced Tab
	Language Tab

	Installing the Wave Driver
	Saving Wave Driver Information
	Verifying the Wave Driver Exists
	Verifying the Cisco�Unified�TSP Installation
	Setting Up Client-Server Configuration
	Uninstalling the Wave Driver
	Removing the Cisco�Unified�TSP
	Managing the Cisco�Unified�TSP
	Reinstalling the Cisco�Unified�TSP
	Upgrading the Cisco�Unified�TSP
	Auto Update for Cisco�Unified�TSP Upgrades
	AutoInstall Behavior

	Uninstalling the Cisco�Unified�TSP

	Cisco�Unified�TAPI Implementation
	TAPI Line Functions
	lineAccept
	Description
	Function Details
	Parameters

	lineAddProvider
	Description
	Function Details
	Parameters
	Return Values

	lineAddToConference
	Description
	Function Details
	Parameters

	lineAnswer
	Description
	Function Details
	Parameters

	lineBlindTransfer
	Description
	Function Details
	Parameters

	lineCallbackFunc
	Description
	Function Details
	Parameters
	Further Details

	lineClose
	Description
	Function Details
	Parameter

	lineCompleteTransfer
	Description
	Function Details
	Parameters

	lineConfigProvider
	Description
	Function Details
	Parameters
	Return Values

	lineDeallocateCall
	Description
	Function Details
	Parameter

	lineDevSpecific
	Description
	Function Details
	Parameters

	lineDial
	Description
	Function Details
	Parameters

	lineDrop
	Description
	Function Details
	Parameters

	lineForward
	Description
	Function Details
	Parameters
	Return Values

	lineGenerateDigits
	Description
	Function Details
	Parameters

	lineGenerateTone
	Description
	Function Details
	Parameters

	lineGetAddressCaps
	Description
	Function Details
	Parameters

	lineGetAddressID
	Description
	Function Details
	Parameters

	lineGetAddressStatus
	Description
	Function Details
	Parameters

	lineGetCallInfo
	Description
	Function Details
	Parameters

	lineGetCallStatus
	Description
	Function Details
	Parameters

	lineGetConfRelatedCalls
	Description
	Function Details
	Parameters
	Return Values

	lineGetDevCaps
	Description
	Function Details
	Parameters

	lineGetID
	Description
	Function Details
	Parameters

	lineGetLineDevStatus
	Description
	Function Details
	Parameters

	lineGetMessage
	Description
	Function Details
	Parameters
	Return Values

	lineGetNewCalls
	Description
	Function Details
	Parameters
	Return Values

	lineGetNumRings
	Description
	Function Details
	Parameters
	Return Values

	lineGetProviderList
	Description
	Function Details
	Parameters
	Return Values

	lineGetRequest
	Description
	Function Details
	Parameters
	Return Values

	lineGetStatusMessages
	Description
	Function Details
	Parameters
	Return Values

	lineGetTranslateCaps
	Description
	Function Details
	Parameters
	Return Values

	lineHandoff
	Description
	Function Details
	Parameters
	Return Values

	lineHold
	Description
	Function Details
	Parameter

	lineInitialize
	Description
	Function Details
	Parameters
	Return Values

	lineInitializeEx
	Description
	Function Details
	Parameters

	lineMakeCall
	Description
	Function Details
	Parameters

	lineMonitorDigits
	Description
	Function Details
	Parameters

	lineMonitorTones
	Description
	Function Details
	Parameters

	lineNegotiateAPIVersion
	Description
	Function Details
	Parameters

	lineNegotiateExtVersion
	Description
	Function Details
	Parameters

	lineOpen
	Description
	Function Details
	Parameters

	linePark
	Description
	Function Details
	Parameters

	linePrepareAddToConference
	Description
	Function Details
	Parameters
	Return Values

	lineRedirect
	Description
	Function Details
	Parameters

	lineRegisterRequestRecipient
	Description
	Function Details
	Parameters
	Return Values

	lineRemoveProvider
	Description
	Function Details
	Parameters
	Return Values

	lineSetAppPriority
	Description
	Function Details
	Parameters
	Return Values

	lineSetCallPrivilege
	Description
	Function Details
	Parameters
	Return Values

	lineSetNumRings
	Description
	Function Details
	Parameters
	Return Values

	lineSetStatusMessages
	Description
	Function Details
	Parameters

	lineSetTollList
	Description
	Function Details
	Parameters
	Return Values

	lineSetupConference
	Description
	Function Details
	Parameters

	lineSetupTransfer
	Description
	Function Details
	Parameters

	lineShutdown
	Description
	Function Details
	Parameters

	lineTranslateAddress
	Description
	Function Details
	Parameters
	Return Values

	lineTranslateDialog
	Description
	Function Details
	Parameters
	Return Values

	lineUnhold
	Description
	Function Details
	Parameters

	lineUnpark
	Description
	Function Details
	Parameters

	TAPI Line Messages
	LINE_ADDRESSSTATE
	Description
	Function Details
	Parameters

	LINE_APPNEWCALL
	Description
	Function Details
	Parameters

	LINE_CALLINFO
	Description
	Function Details
	Parameters

	LINE_CALLSTATE
	Description
	Function Details
	Parameters

	LINE_CLOSE
	Description
	Function Details
	Parameters

	LINE_CREATE
	Description
	Function Details
	Parameters

	LINE_DEVSPECIFIC
	Description
	Function Details
	Parameters

	LINE_GENERATE
	Description
	Function Details
	Parameters

	LINE_LINEDEVSTATE
	Description
	Function Details
	Parameters

	LINE_MONITORDIGITS
	Description
	Function Details
	Parameters

	LINE_MONITORTONE
	Description
	Function Details
	Parameters

	LINE_REMOVE
	Description
	Function Details
	Parameters

	LINE_REPLY
	Description
	Function Details
	Parameters

	LINE_REQUEST
	Description
	Function Details
	Parameters

	TAPI Line Device Structures
	LINEADDRESSCAPS
	LINEADDRESSSTATUS
	LINEAPPINFO
	Description
	Structure Details

	LINECALLINFO
	LINECALLLIST
	Description
	Structure Details

	LINECALLPARAMS
	LINECALLSTATUS
	LINECARDENTRY
	Description
	Structure Details
	Members

	LINECOUNTRYENTRY
	Description
	Structure Details

	LINECOUNTRYLIST
	Description
	Structure Details

	LINEDEVCAPS
	LINEDEVSTATUS
	LINEEXTENSIONID
	LINEFORWARD
	Description
	Structure Details

	LINEFORWARDLIST
	Description
	Structure Details

	LINEGENERATETONE
	Description
	Structure Details

	LINEINITIALIZEEXPARAMS
	Description
	Structure Details
	Further Details

	LINELOCATIONENTRY
	Description
	Structure Details

	LINEMESSAGE
	Description
	Structure Details
	Further Details

	LINEMONITORTONE
	Description
	Structure Details

	LINEPROVIDERENTRY
	Description
	Structure Details

	LINEPROVIDERLIST
	Description
	Structure Details

	LINEREQMAKECALL
	Description
	Structure Details

	LINETRANSLATECAPS
	Description
	Structure Details

	LINETRANSLATEOUTPUT
	Description
	Structure Details

	TAPI Phone Functions
	phoneCallbackFunc
	Description
	Function Details
	Parameters
	Further Details

	phoneClose
	Description
	Function Details
	Parameter

	phoneDevSpecific
	Description
	Function Details
	Parameter

	phoneGetDevCaps
	Description
	Function Details
	Parameters

	phoneGetDisplay
	Description
	Function Details
	Parameters

	phoneGetLamp
	Description
	Function Details
	Parameters

	phoneGetMessage
	Description
	Function Details
	Parameters
	Return Values

	phoneGetRing
	Description
	Function Details
	Parameters

	phoneGetStatus
	Description
	Function Details
	Parameters
	Return Values

	phoneGetStatusMessages
	Description
	Function Details
	Parameters
	Return Values

	phoneInitialize
	Description
	Function Details
	Parameters
	Return Values

	phoneInitializeEx
	Description
	Function Details
	Parameters
	Return Values

	phoneNegotiateAPIVersion
	Description
	Function Details
	Parameters
	Return Values

	phoneOpen
	Description
	Function Details
	Parameters

	phoneSetDisplay
	Description
	Function Details
	Parameters

	phoneSetLamp
	Description
	Function Details
	Parameters

	phoneSetStatusMessages
	Description
	Function Details
	Parameters

	phoneShutdown
	Description
	Function Details
	Parameter
	Return Values

	TAPI Phone Messages
	PHONE_BUTTON
	Description
	Function Details
	Parameters

	PHONE_CLOSE
	Description
	Function Details
	Parameters

	PHONE_CREATE
	Description
	Function Details
	Parameters

	PHONE_REMOVE
	Description
	Function Details
	Parameters

	PHONE_REPLY
	Description
	Function Details
	Parameters

	PHONE_STATE
	Description
	Function Details
	Parameters

	TAPI Phone Structures
	PHONECAPS
	Members

	PHONEINITIALIZEEXPARAMS
	Description
	Structure Details
	Members

	PHONEMESSAGE
	Description
	Structure Details
	Members
	Further Details

	PHONESTATUS
	Description
	Structure Details
	Members

	VARSTRING
	Description
	Structure Details
	Members

	Wave
	waveInAddBuffer
	Description
	Function Details
	Parameters

	waveInClose
	Description
	Function Details
	Parameter

	waveInGetID
	Description
	Function Details
	Parameters

	waveInGetPosition
	Description
	Function Details
	Parameters

	waveInOpen
	Description
	Function Details
	Parameters

	waveInPrepareHeader
	Description
	Function Details
	Parameters

	waveInReset
	Description
	Function Details
	Parameter

	waveInStart
	Description
	Function Details
	Parameter

	waveInUnprepareHeader
	Description
	Function Details
	Parameters

	waveOutClose
	Description
	Function Details
	Parameter

	waveOutGetDevCaps
	Description
	Function Details
	Parameters

	waveOutGetID
	Description
	Function Details
	Parameters

	waveOutGetPosition
	Description
	Function Details
	Parameters

	waveOutOpen
	Description
	Function Details
	Parameters

	waveOutPrepareHeader
	Description
	Function Details
	Parameters

	waveOutReset
	Description
	Function Details
	Parameter

	waveOutUnprepareHeader
	Description
	Function Details
	Parameters

	waveOutWrite
	Description
	Function Details
	Parameters

	Cisco Device Specific Extensions
	Cisco Line Device Specific Extensions
	Structures
	LINEDEVCAPS Device Specific Extensions

	LINECALLINFO Device Specific Extensions
	Description
	Detail
	Parameters

	LINEDEVSTATUS Device Specific Extensions
	Description
	Detail
	Parameters

	CCiscoLineDevSpecific
	Description
	Header File
	Class Detail
	Functions
	Parameter
	Subclasses
	Enumeration

	Message Waiting
	Description
	Class Detail
	Parameters

	Message Waiting Dirn
	Description
	Class Detail
	Parameters

	Audio Stream Control
	Description
	Class Detail
	Parameters

	Set Status Messages
	Description
	Class Detail
	Parameters

	Swap-Hold/SetupTransfer
	Description
	Class Details
	Parameters

	Redirect Reset Original Called ID
	Description
	Class Details
	Parameters

	Port Registration per Call
	Description
	Class Details
	Parameters

	Setting RTP Parameters for Call
	Description
	Class Details
	Parameters

	Redirect Set Original Called ID
	Description
	Class Details
	Parameters

	Join
	Description
	Class Details
	Parameters

	Set User SRTP Algorithm IDs
	Description
	Class Detail
	Supported Algorithm Constants
	Parameters

	Explicit Acquire
	Description
	Class Details
	Parameters

	Explicit De-Acquire
	Description
	Class Details
	Parameters

	Redirect FAC CMC
	Description
	Class Detail
	Parameters

	Blind Transfer FAC CMC
	Description
	Class Detail
	Parameters

	CTI Port Third Party Monitor
	Description
	Class Detail
	Parameters

	Send Line Open
	Description
	Class Detail

	Cisco Phone Device Specific Extensions
	CCiscoPhoneDevSpecific
	Description
	Header File
	Class Detail
	Functions
	Parameter
	Subclasses
	Enumeration

	CCiscoPhoneDevSpecificDataPassThrough
	Description
	Class Detail
	Parameters

	CCiscoPhoneDevSpecificAcquire
	Description
	Class Details
	Parameters

	CCiscoPhoneDevSpecificDeacquire
	Description
	Class Details
	Parameters

	CCiscoPhoneDevSpecificGetRTPSnapshot
	Description
	Class Details
	Parameters

	Messages
	Description
	Start Transmission Events
	Start Reception Events
	Stop Transmission Events
	Stop Reception Events
	Existing Call Events
	Open Logical Channel Events
	LINECALLINFO_DEVSPECIFICDATA Events
	Call Tone Changed Events

	Message Sequence Charts
	Manual Outbound Call
	Blind Transfer
	Redirect Set Original Called (TxToVM)
	Shared Line Scenarios
	Initiate a New Call Manually

	Presentation Indication
	Make a Call Through Translation Pattern
	Blind Transfer Through Translation Pattern

	Forced Authorization and Client Matter Code Scenarios
	Manual Call to a Destination that Requires a FAC
	Manual Call to a Destination that Requires both FAC and CMC
	lineMakeCall to a Destination that Requires a FAC
	lineMakeCall to a Destination that Requires Both FAC and CMC
	Timeout Waiting for FAC or Invalid FAC entered

	Refer / Replaces Scenarios
	In-Dialog Refer - Referrer in Cisco�Unified�CallManager Cluster
	In-Dialog Refer Where ReferToTarget Redirects the Call in Offering State
	In-Dialog Refer Where Refer Fails / Refer to Target is Busy
	Out-of-Dialog Refer
	Invite with Replace for Confirmed Dialog
	Refer with Replace for All in Cluster
	Refer with Replace for All in Cluster, Replace Dialog Belongs to Another Station

	3XX scenario
	SRTP Scenario
	Media Terminate by Application (open secure CTI port or RP)
	Media Terminate by TSP Wave Driver (open secure CTI port)

	Cisco�Unified�TAPI Examples
	MakeCall
	OpenLine
	CloseLine

	Cisco�Unified�TSP Interfaces
	Cisco�Unified�TAPI Version 2.1 Interfaces
	Core Package

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (U.S. Prepress Defaults)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

